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Variational algorithms that control the lengths of grid lines, cell 
areas, and the orthogonality of grid lines can be used for generating 
boundary-conforming grids on surfaces. Additional geometric control 
is provided by using a reference grid, while solution adaptivity is 
achieved by using weights. In a typical application, the reference grid 
can be used to produce an exponential compression of the grid at a 
boundary, while the solution adaptive weights are used to make the 
grid spacing inversely proportional to the gradient (when the gradient 
is large) of some solution being computed on the grid. The grid is 
adapted on both the interior and boundary of the surface. The algorithm 
performs these tasks with exceptional precision, as demonstrated in the 
examples presented here. 0 1992 Academic Press, Inc. 
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1. INTRODUCTION 

In the paper [9], the authors present a new variational 
algorithm for generating grids on surfaces. The paper 
emphasizes the development of algorithms based on direct 
geometric intuition. Functionals for controlling the length 
of grid lines, areas of grid cells, and angles between grid lines 
are introduced, as well as reference grids which are used 

* This work was partially supported by the Office of Naval Research and 
the Army Research Office. 

to highly compress the grids along boundaries (see also 
[2, 31). Solution adaptive weights are not discussed, but 
can be easily added to the theory (as is done in this paper). 

In some applications, the surface grid generator has con- 
vergence difficulties for surfaces of modest shape. These dif- 
ficulties are, in fact, a result of a bifurcation of the solution 
of the discrete grid-generation equations [ 111. The results 
described here show how to formulate the discrete 
approximations to the Euler-Lagrange equations for the 
variational problem so that the bifurcation is either 
eliminated or significantly delayed, and thus grids can be 
generated on most surfaces of interest. The main idea is to 
keep the Euler-Lagrange equations symmetric. Because 
these equations are nonlinear, there are certain subtleties 
involved, particularly for the area functional. 

For several years, the authors have been using numerical 
geometric quality measures to judge the performance of 
numerical grid-generation algorithms. A description of 
these measures has not been published; therefore, some 
information is included here. The measures are far more 
critical than graphical displays, so only a few plots are 
shown in the paper. (The plots look exactly as one would 
imagine.) 

The main points of this paper are: (1) simple geometric 
intuition is used to create a variational problem for gener- 
ating grids with certain desired properties; (2) appropriate 
discretization of the Euler-Lagrange equations for the 
variational problem produces algorithms adequate for 
generating grids; (3) grid quality measures should be used 
to judge the success of the algorithm; (4) and the generated 
grids satisfy the desired intuitive criteria. In fact, the algo- 
rithms match intuition exceptionally well and this makes 
them relatively easy to use. 

A related variational algorithm is introduced by 
Saltzman [S] and a differential-geometric approach is 
considered by Warsi [14]. Grid generation on curves 
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is discussed by Eiseman [S]. Over 30 grid-generation 
algorithms have been considered by Knupp [6]; the most 
promising are being extended to surface-grid generators. 
Also, Arina [ 1 ] discusses adaptive orthogonal coordinates. 

Most of the algorithms that are important for surface- 
grid generation also apply to curve-grid generation. The 
curve problems are simpler to analyze, implement, and 
study numerically. Consequently, this paper begins with a 
discussion of curves and then extends these results to 
surfaces. Moreover, planar regions are a special case of 
surfaces, so the surface algorithm is specialized to this case. 
This special algorithm eliminates the need to parameterize 
the full region and is more efficient than the general surface 
algorithm. 

Previously, two variational curve grid-generation algo- 
rithms have been studied by the authors [ 1 I]. These algo- 
rithms are derived by first solving the Euler-Lagrange equa- 
tion for the second derivative term and then discretizing the 
resulting equation (see Eq. (2.37) and (2.45) of [ 111). When 
the equation is solved for the second derivative term, a first 
derivative term is created and this then results in an asym- 
metry which causes serious problems. In this paper, the 
Euler-Lagrange equation is left in symmetric form and 
is differenced in such a way that the resulting discrete 
equations are symmetric when Q and W are constant (see 
Eq. (3.33) below). This results in a substantial improvement 
in the algorithm. In addition, reference grids and solution 
adaptivity are consider in this paper but were not con- 
sidered in [ 111. 

This paper is organized as follows: first, the quality 
measures and symmetric differencing are described. Second, 
curve grid generation is presented, and a solution adaptive 
weight is introduced. This is followed by a set of numerical 
experiments, which show that the grid-bifurcation problem 
is less significant and that the algorithm does reference and 
solution adaption as predicted by the theory. In fact, the 
algorithm produces grids of exceptional quality; however, 
for certain solution adaptive weights convergence is 
delayed. Changes in the algorithm to reduce this problem 
will be considered in the future. Third, surface grid genera- 
tion is described and numerically tested. Only a few tests are 
needed to confirm that the surface results are consistent 
with the curve case. The reduction of the surface algorithm 
to a planar algorithm and the dependence of grids on the 
parameterization are discussed in Section 7. 

2. PRELIMINARIES 

Two general ideas are critical to this work. First, the 
numerical algorithms perform better if the main parts of the 
differential equations that are used to compute the grids are 
kept in symmetric form, and this symmetry is preserved 
in the difference equations. Moreover, the quality of the 
generated grids is best judged by using numerical measures 

closely related to the variational principals that are used to 
generate the grids. 

2.1, Quality Measures 

The geometric properties of the grids are measured using 
averages and deviations. As discussed below, the variational 
methods provide algorithms with direct geometric intuition; 
how well the intuitive requirements are met is estimated 
using these measures. 

The curve grid generator attempts to divide a curve into 
n segments, where the length of the grid segments L, are 
required to be proportional to some given quantities a,, that 
is, L, cc a,, 1 < Id n. In this case, an average value is defined 
by 

aver = i ,g, 2. (2.1) 

Then the deviation from the average is defined by 

dev=’ (l/n) CY= 1 (WaJ - aver)’ 
aver (2.2) 

In the case of surfaces, two length deviations are com- 
puted. One is for segments in the first logical direction, and 
another is for the second logical direction. The code reports 
the average of the two deviations. 

Like the length control, the area control is supposed to 
produce grids where the area of each cell A I is proportional 
to some given quantities 6,. So again, if there are m cells, an 
average value is defined by 

(2.3) 

and the deviation is defined as it is in the length case. The 
area of a cell is measured by the magnitude of the cross 
product of two edge vectors for a pair of adjoining edges. 

If the deviation is normalized by the average, then 
100 * dev represents a percentage deviation or error. It is 
easy to see that, if the deviations are all approximately the 
same as the average, then the deviation is about 1 or 100 % . 
This is not good and means that the algorithm is failing to 
generate a reasonable grid. If the deviation is about 0.1 or 
10%) then the method has a significant effect. However, 
defects in the generated grid can be seen graphically. If the 
deviation is about 0.01, then the intuitive requirements are 
well satisfied and the grid defects are not noticeable graphi- 
cally. Experience indicates that grids with a quality measure 
less than 0.3 are adequate. 

The orthogonality control is supposed to produce 
orthogonal grids. If the grid is nearly orthogonal, then 
the cosines of the angles between the grid lines are 
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approximately zero and, consequently, the average of the 
cosines should be close to zero. Thus there is no need to 
calculate an average value; only a deviation is needed. 
Because the average value nearly is zero, it is not reasonable 
to normalize the deviation by the average. If 6,, 1 d I < m, 
are the angles between the grid lines, then the deviation of 
the cosines of the angles is defined by 

dev = 
J 

(2.4) 

The code reports arc cos(dev) in degrees. 
Note that quality measures, for grids that are good, are 

computed by subtracting nearly equal numbers. On single 
precision machines, this leads to significant relative errors, 
so only the order of magnitude of the quality measures is 
considered significant. 

2.2. Symmetric Differencing 

As shown below, it is possible to write the principal part 
of the Euler-Lagrange equations for the grid-control 
functionals in a symmetric form. The notion of symmetry 
corresponds to the concept of formally self-adjoint 
operators when the operators are linear. Because the 
operators that appear in the grid-generation problem are 
nonlinear, the symmetry conditions are written explicitly 
below. Numerical experimentation shows that discretizing 
the symmetric differential equations so that the resulting dif- 
ference equations are also symmetric substantially improves 
the numerical algorithms. The symmetry conditions written 
explicitly below correspond to the coefficient matrix of the 
difference scheme being symmetric. See [12] for more 
details on symmetric differencing. 

Differential equations are written in the logical variables 
(5, q), so these variables are used to describe the symmetric 
differences. Define the half-step central-difference and 
central-average operators by 

Scf~~,‘1)=f(5+A~/2,?)-f(~-Ag/2,9) 
A5 

7 

6 f(5 ~)_f(5,rl+A~/2)-f(5,?-49/2) 
q ’ 4 

~:f(5,rl)=f(5+Ai”/2,s)+f(~-A~/2,?) 
2 5 

~ f(5 ?)_f(5,?+411/2)+f(5,rl-Ar1/2) 
‘I ’ 2 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Note that the full-step central-difference operator can be 
written in terms of the half-step difference and average, 

(2.9) 

Most terms in the grid generation equations can be 
differenced using the following rules: 

x 6SP<(443 ?)@,P,f(5, rl))). (2.11) 

The mixed-derivative term is not symmetric. However, the 
combination 

is symmetric; the second rule applied twice to this expres- 
sion produces a symmetric difference expression. 

The area-control differential equations contain unusual 
terms; for example, the above rules do not apply to 

(2.13) 

Again, such terms occur in pairs, with the 5 and q 
derivatives interchanged. Such combinations are differenced 
to produce symmetric schemes using the rule: 

=:q 65((PtP,453 V))(Pq 6, St53 v)) 
x (IQ 6, A53 V))(PLc S,f(L VI)). (2.14) 

This rule is derived from techniques which are explained in 
[12]. The above rule does not immediately produce a 
nearest neighbor scheme, but a scheme can be generated by 
replacing A< by At/2 and A? by 4~12. 

2.3. Symmetric Difference Equations 

The above rules are used to produce difference equations 
by replacing the At notation by an index notation. In one 
dimension, the stencil (i.e., coefficients of the difference 
scheme) names are 1, c, and r with the meanings “left,” 
“center,” and “right.” The equations that are solved have the 
form 

lifi- I+ ci.L +rif,+ 1 = gi9 2<i<n- 1. (2.15) 

Here Zi, ci, ri, and gj are given for 2 < i < n - 1, while fi, 
1 d i<n, are computed. Two additional conditions are 
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needed. They are given by the boundary conditions, which 
are Dirichlet conditions of the form fi = a, f, = b, for grid- 
generation equations on regions with fixed boundaries. The 
stencils Zi, ci, and ri are needed for 2 < i < n - 1. The system 
of difference equations is said to be symmetric, if 

lj=ri-1, 3<idn-1. (2.16) 

Thus, all of the lj can be computed from I, and ri. 
In two dimensions, the stencil names are lu, U, ru, Z, c, r, 

Zd, d, and rd with the meanings “left upper,” “upper,” and so 
forth. A general nearest-neighbor difference equation for 
one unknown function, &, 1 < id m, 1 <j< n, has the 
form 

l”i,jfi-I,j+l+Ui,,fi,j+l+rui,jfi+l,j+l 

+li,jfi-l,j+ci,~fi,j+ri,jfi+l,j 

+ldi,jL-l,j-~ +di.jL,j-1 

+ rdi,jfi+ l,j- I = gi,j, (2.17) 

for 2 d i < m - 1, 2 < j d n - 1. These difference equations 
are symmetric, provided that 

li,j=ri-ll,,, 3<i<m--1, 

26jdn-1, (2.18) 

di,j= ui,j- 1, 2<i<m-1, 

3<jdn-1, (2.19) 

lu,j= rdi- l,j+ 19 3<idm--1, 

2< j<n-2, (2.20) 

Idi,=rui-1 j-1, 3<ibm-1, 

3<j<n-1. (2.21) 

The stencils 1, d, lu, and Id are computed from these 
equations and from 12, j, d,, , lu,, j, lui,, ~ 1, Id,, j, and Idi,, . 
Again, for more details, see [ 121. 

3. CURVES 

In the paper [9], the authors use geometric intuition to 
derive variational principles for generating grids on curves, 
surfaces, planar regions and in volumes. For curves, all prin- 
ciples are essentially the same. In [ 111, the authors study 
two algorithms for numerically solving the Euler-Lagrange 
equations for the variational principle and show that these 
algorithms have a serious bifurcation problem that severely 
limits their usefulness. In this section, a new algorithm is 
introduced that preserves the underlying symmetry of the 
variational principle. This either eliminates or significantly 
delays the bifurcation problem. In addition, the reference 

grid and solution adaptivity parts of the algorithm are 
shown to work exceptionally well (this was not considered 
in [ 111). For more motivation, details, and notation, see 
Steinberg and Roache [9, 111. 

A curve in three-dimensional space is described 
parametrically, 

v(r) = (x(r), y(r), z(r)), Odr<l, (3.22) 

and is assumed to be smooth. The metric is needed in the 
grid generation equations and is defined by 

Q(r)= y ’ 
II II 

= (x’(r))2 + (y’(r))‘+ (z’(r))2. (3.23) 

(Several notations are used for derivatives: dx/dr z x, E x’.) 
Recall that the length of an element of the curve is given by 

J’&? dr. (3.24) 

Note that any parameterization provides a discrete grid 
when discrete increments in the parameterization variable 
are used to step out discrete points. This leads naturally 
to the powerful concept of the parameterization being a 
“continuum grid.” A new continuum grid is generated by 
calculating a re-parameterization of a curve in the form 

r= r(t), O<(<l. (3.25) 

In these discussions, the variables x, y, and z are called 
physical; r is called parameter, and 5 is called logical. In the 
logical variable, the length of an element is 

JQ(r) r’(5) dt. (3.26) 

Both a reference grid (see [9]) and a solution adaptive 
weight are used to control the grid. If a one-dimensional 
reference grid is given by a(t), 0 < 5 d 1, then the derivative 
w = CC’ is needed in the grid-generation equations. The 
reference grid is typically used to obtain an exponential 
compression of the grid near a boundary by choosing u as 
an exponential. The use of solution-adaptive weights has 
not been discussed in our previous work, but the theory 
provided in [9] makes it easy to set up the required varia- 
tional problem. Let u = u(x, y, z) be the solution of some 
physical problem for which an adaptive grid is desired, and 
let 

u(r) = 4x(r), y(r), z(r)). 

Recall that the chain rule gives 

ut = u,/rt . 

(3.27) 

(3.28) 
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Whether or not the weight W depends on r is critical in the 
variational problem, so set 

u,(r) 2 W(r)=l+a - 
( ) r’ 

which is, in fact, 

W(r) = 1 + a(uS)2. (3.30) 

The addition of 1 is used to keep the weight constant when 
the derivative of u is small and to keep the weight from 
becoming zero. The a is for scaling. Note that @=a~, 
when ug is large. 

The main idea is to produce grids on the curve so that the 
grid spacing is proportional to the spacing of the reference 
grid and inversely proportional to a derivative of the 
solution, 

(From now on, assume r = r(t).) 
The appropriate variational integral (see [9]) for 

generating such a grid is 

(3.32) 

The factor in front of the integral is used for convenience. 
The Euler-Lagrange equation 
integral is 

for the minimization of this 

1 J+‘(r) aQ(r) + Q(r) aW(r) 
=2 w(5)ag ( -- 

Note that the left-hand side of the previous equation er- 1 
(principal part) is symmetric. x=------- 

e-l’ It is easy to see that, in the case of curves, the 
Euler-Lagrange equation is integrable; assuming all func- 
tions are positive, one integration gives 

ln(r + 1) 
(4.35) 

X=ln(2)’ 
y=o, z=o, 

rg m=,,,,, 

45) 
7 (3.34) 

which confirms the intuitive discussion given above. This 
information is not used in the following discussion, because 
the surface Euler-Lagrange equations are not integrable; we 
want the methods that we use for curves to extend to the 
surface problem. 

3.1. Numerical Algorithm for Curves 

The Euler-Lagrange equation (3.33) is solved iteratively. 
Given an approximate solution for r = r(t), the right-hand 
side of Eq. (3.33) is evaluated using central differences. The 
left-hand side of (3.33) is differenced by using the schemes 
discussed in the Section 2.3 on symmetric differencing. This 
produces a system of nonlinear symmetric finite-difference 
equations for r. The coefficients of the nonlinear scheme are 
evaluated using the current approximation for the solution. 
Then, the resulting linear difference equations are solved, 
using Gaussian elimination without pivoting (using a 
standard tridiagonal solver). 

4. NUMERICAL VALIDATION FOR CURVES 

The curve grid-generation algorithm produces a grid that 
is the best possible solution, in the least squares sense, of the 
proportionality given in the previous section. How well the 
algorithm does this is what is tested in this section. Note 
that the theory is given in the continuum, so it is expected 
that the proportionality will be off by a truncation error, 
and these discrepancies will decrease with increasing grid 
resolution. The grid length-quality measure is used to 
evaluate the numerical results. 

Unless otherwise stated, all computer runs are done: with 
no relaxation factor in the nonlinear iteration; with a stop- 
ping criterion of the grid changing less than one part in 105; 
and with a random grid as a starting point for the nonlinear 
iteration. The convergence requirements are far more 
stringent than the requirements for productions codes. 
Recall that previous algorithms show anomalous behavior 
[ 111. The question is: how well are those problems con- 
trolled? 

4.1. Convergence Rate 

The numerical scheme is second order, as the following 
tests confirm. The problems used to test the convergence 
rate are re-parameterizations of the unit interval 

y = 0, z = 0, 

where 0 <r < 1. If the parameter space r is divided into 
equal segments, then the previous parameterizations 
produce (significantly) irregular grids in the physical space 
x ( y and z are trivial). The algorithm changes each of these 
grids to a uniform grid in physical space. 

The data in Table I was computed by starting with a 
uniform grid in parameter space and then forcing the 
convergence to full machine precision. The results for the 
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TABLE I 

Convergence Rates for the Curve Generator 

Exp Log 

n n-Max n-Dev Ratio n-Max n-Dev Ratio 

5 0.1188 0.2839 1.030 0.01587 0.03549 1.004 
9 0.1089 0.2620 1.010 0.01310 0.03002 1.001 

17 0.09943 0.2429 1.003 0.01170 0.02701 1.000 
33 0.09389 0.2311 1.001 0.01019 0.02352 1.000 
65 0.08953 0.2187 1.000 0.009947 0.02710 1 .ooO 

129 0.1399 0.4682 1 .OQo 0.04959 0.2430 1.000 

exponential map are given in columns two through four 
while the results for the logarithm are presented in columns 
live through seven. Because the algorithm is second order, 
some quantities are normalized by multiplying by the 
square of the number of grid points so that the resulting 
column will be nearly constant. In this table, n is the number 
of grid points, n-max is the maximum norm of the difference 
between the identity map and the computed grid multiplied 
by n2, n-dev is the deviation of the grid lengths multiplied by 
rz’, and ratio is the ratio of the lengths of the longest and 
shortest segments. In the last row, where n = 128, the single 
precision arithmetic is beginning to contaminate the results. 
The test clearly confirm that the algorithm is second order. 

4.2. Equal Spacing 

One of the goals of this work is to develop an algorithm 
that generates quality grids on a nominal curve (height one, 
width one). A parabola 

y=4sr(l-r), x = r, z=o, O<rdl, (4.36) 

of height E is used for a test curve. The simplest type of grid 
is one that has equal segment lengths. The algorithm 
generates such a grid, if the weights are made trivial: 
W(r) E 1 = w(r). In Table II, E = 1, n is the number of grid 

TABLE II 

Nominal Curve 

n 1tr Dev 

3 2 0.0000 
5 14 0.1245 
9 25 0.075 

17 29 0.032 
33 42 0.010 
65 46 0.003 

129 54 0.0007 
257 61 0.0002 
513 55 0.0001 

TABLE III 

Bifurcation Values 

n Value 

21 co 
41 3.50 GE 6 3.75 
81 3.25 GE < 3.50 

161 3.75 GE < 4.25 

points, itr is the of number nonlinear iterations used, and 
deu is the deviation of the grid lengths. This table shows that 
the algorithm under consideration does its job well. Note 
the decrease in dev with resolution; in fact, 

dev cc l/n. (4.37) 

This relationship holds in a wide range of examples. 
Previous versions of this algorithm have bifurcation 

problems [ 111. In the algorithm presented here, this 
problem is significantly reduced. Again, this difficulty is 
studied using the parabola (4.36). Typically, for a given 
number of nodes, the solution to the discrete equations 
bifurcates for sufficiently large E. Table III gives bifurcation 
values for the new algorithm. The first column gives the 
number of grid points, while the second column gives an 
estimate for the value of E at which the solution of the non- 
linear equations bifurcate. The value of E was resolved in 
increments of 0.25. For large n, the values of E given by this 
algorithm are twice as good as the values given by any other 
version of the algorithm; the performance for coarse grids is 
exceptional. 

Table IV illustrates the lack of bifurcation for a grid con- 
taining 21 points. Here E is the height of the curve. As before, 
itr is the number of nonlinear iterations, and deu is the 
deviation of lengths. 

Additional tests were run on the curve 

x = r, y = 0, 2 = i + E sin( 7cr), Odrdl, (4.38) 

TABLE IV 

No Bifurcation 

E 1tr Dev 

0.25 10 0.001 
0.50 22 0.004 
1.00 27 0.022 
2.00 51 0.064 
4.00 125 0.091 
5.00 140 0.094 

10.00 170 0.102 
20.00 182 0.103 
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TABLE V TABLE VI 

Tall Curve Exponential Weight 

n 1tr Dev Bifurcation 

3 2 0.000 No 
5 16 0.186 No 
9 38 0.154 No 

17 111 0.114 No 
33 107 0.103 Yes 
65 >400 1 Yes 

II 1tr 

17 13 
33 13 
65 13 

Prescribed Computed 
ratio ratio 

2.0 1.782 
2.0 1.883 
2.0 1.939 

which appears as the boundary values of a surface used to 
test the surface grid generator. This curve is more difficult to 
grid than the quadratic, but the results are still rather 
similar, so not much is presented here. In the case where 
n = 21 the bifurcation point occurs for E > 10.0. If a non- 
linear relaxation factor of 4 rather than 1 is used, then the 
number of nonlinear iterations needed to meet a nonlinear 
tolerance of lop4 is reduced by a factor of three. 

For the quadratic curve, Table V illustrates the bifurca- 
tion of the grid for E = 25 (the height of the curve is 25, while 
its width is 1). The last column indicates if the grid has bifur- 
cated (Note. The iteration count decreases after the bifurca- 
tion). Also, note that deu decreases with increasing resolu- 
tion. 

weight depends implicitly on r. Our goal is to provide algo- 
rithms that can adjust grid length by an order of magnitude. 
However, adjusting the grid by a factor of two is significant, 
particularly in multi-dimensional problems. In the following 
tables, n is the number of points in the grid, itr is the number 
of nonlinear iterations (recall that the convergence criterion 
is strict), prescribed ratio ( = R) is the ratio the maximum to 
minimum values of the prescribed weight, computed ratio 
is the ratio of the maximum to minimum length of the 
computed grid, and dev is the deviation of grid lengths. 

Recall that if the ratio of the maximum to minimum value 
of the weight is R2, then the ratio of the maximum to mini- 
mum grid lengths should be R. First, the response to a 
modest skewed weight is tested. In Table VI the weight is 
taken as a Gaussian exponential with R = 2, 

It is, of course, desirable to have an algorithm that has 
no bifurcation. Numerous algorithms are being tested (see 
[6]); most show significant anomalous behavior that 
involves either the existence of multiple solutions or bifurca- 
tion of the solution of the nonlinear equations, A few show 
promise and are undergoing further testing. None of the 
promising algorithms do equi-spacing, but rather, they 
attempt to produce a “quality” grid. As far as we know, the 
algorithms presented in [8, 143 have not been tested for 
such problems. 

W(()=e-““‘5)-2/5P, 

50 W) ~ 3 85 
(4.40) 

a=7-- . . 

4.3. Solution Adaption 

To test the solution-adaptive part of the algorithm, a 
trivial curve, 

(Note that x = r.) As the values in the Table VI show, the 
algorithm performs very well, because the computed ratio 
rapidly approaches the prescribed ratio 2. Also, the devia- 
tions are good and improve with increasing resolution. 

For Table VII a symmetric, but stronger weight with 
prescribed ratio R = 10 is used. The symmetry guarantees 
that the center point of the solution grid is at the center of 
the interval. This is checked to guarantee that the grid has 
not bifurcated. The weight is 

x = r, y = 0, z = 0, Odrdl, (4.39) 

W(t)=e- 8 In(R)(x(S)- 1/2)2 
2 

TABLE VII 

is used, and the reference grid is set to the identity, o(l) z 1. 
With this setup, the only effects come from the solution- 
adaptive weight W(r). Two types of weights are considered: 
exponential and polynomial. The exponential weights are 
used to model smooth adaptivity functions while the poly- 
nomials are used to model less smooth adaptivity functions. 
Also, the weights are given as functions of 5. However, when 
a value of the weight is looked up: (1) r = r(5) is computed; 
(2) the values of (x(r), y(r), z(r)) are found; and (3) the 
value of the weight is found. Therefore, the value of the 

Exponential Weight 

Prescribed Computed 
n Itr ratio ratio Dev 

9 12 10.0 2.811 0.33 
17 7 10.0 4.189 0.20 
33 8 10.0 5.712 0.11 
65 7 10.0 7.153 0.06 

129 7 10.0 8.306 0.03 
257 7 10.0 9.071 0.02 

Dev 

0.04 
0.02 
0.01 

(4.41) 
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TABLE VIII TABLE IX 

Trouble Values Continuous Weight 

n Itr 

9 20 
17 18 
33 20 

Prescribed 
ratio 

13.6 
35.0 
38.5 

Computed 
ratio Dev 

3.036 0.36 
6.219 0.29 

10.020 0.19 

n Itr 

17 110 
33 124 
65 133 

Computed 
ratio 

1.980 
1.989 
1.996 

and the nonlinear tolerance for the next two tables is 
one part in 103. For such a strong adaptivity function, the 
number of iterations is small, the ratios are good and 
converge to the correct value, and the deviations are 
reasonable. 

It is not possible to use the symmetric algorithm for 
an arbitrary weight. In Table VIII the value R of the 
prescribed ratio is increased until the code has problems, 
typically floating point exceptions or iterative divergence. 
The column labelled prescribed ratio indicates a value of R 
just below where the code has problems. This is not a bifur- 
cation point, because the nominal algorithm described in 
[ 111 can be used to generate grids for much larger values of 
the prescribed ratio. Unfortunately, the nominal algorithm 
does not generalize to surfaces. The values of ratio and Geu 
are not particularly good, because the algorithm is being 
pushed to its limits. 

For the polynomial examples, the weight functions are 
chosen so that R = 2. The weight function W is chosen as a 
piece-wise polynomial, so that the resulting weight function 
has a certain degree of smoothness and large constant 
regions. Thus, the polynomial parts are either constant or 
the lowest degree polynomial that satisfies either the first, 
the first and second, or all of the following conditions: 

tinuously differentiable, but not twice differentiable. In 
Table XI the weight is composed of cubic polynomials 
and is twice continuously differentiable, but not thrice 
differentiable. The derivatives of all the polynomials 
@ - 4 R,b,r,d (r) are positive for a < r < b, so the non- 
constant polynomial parts of the weight are monotonic. In 
fact, for a = 0, b = 1, c = 0, and d = 1 the polynomials are 
P(r) = r, P(r) = r2(3 - 2r), P(r) = r3( 10 - 15r + 6r’). 

The algorithm is somewhat sensitive when piece-wise 
polynomial weights are used, so in these cases a nonlinear 
relaxation factor of 0.1 is used (not all cases need a factor 
this small). Also, the initial grid is equi-spaced in r. 

Again, the ratios and deviations are excellent. A better 
solution technique or tuned relaxation factor would easily 
speed up the algorithm. For the polynomial weights, the 
grid-generation problem becomes more difficult as the 
smoothness of the weight is increased. This is unexpected, 
and we have no clear explanation for this behavior. 
However, we do note that, as the degree of the transition 
polynomial increases, for the interval [a, b], the values of 
the polynomial remain bounded, the maximum values of 
the derivatives increase slowly, the maximum values of the 
second derivatives increase significantly, the maximum 
value of the third derivatives increase rapidly, and so forth. 
This is a possible source of the slow convergence. 

P a,b,r,d(a) = c, P,,w(b) = d (4.42) 

Ph,,da) = 0, Ph,d(b) = 0, (4.43) 

P6,,,:Ja) = 0, P~,~Ab) = 0. (4.44) 

The weight function is chosen (with some asymmetry) as 

4.4. Reference Grids 

To test the reference-grid concept, again, a trivial curve 

W(r) = 1.0, 0.0 < r < 0.2, 

W(r) = Po.2,0.3,~.~,4.~(rL 0.2 < r < 0.3, 

W(r) = 4.0, 0.3 < r < 0.5, (4.45) 

W(r) = P0_5,0_6.4.0,1.0(r)~ 0.5 < r < 0.6, 

W(r) = 1.0, 0.6 < r < 1.0. 

In Table IX the weight is composed of linear polynomials 
and is continuous, but not differentiable. In Table X the 
weight is composed of cubic polynomials and is con- 

x = r, Y = 0, z = 0, O<r<l, (4.46) 

is used, and the solution-adaptive weight is set to the iden- 

TABLE X 

Differentiable Weight 

n Itr 

17 103 
33 126 
65 141 

Computed 
ratio 

1.975 
1.985 
1.994 

Dev 

0.082 
0.045 
0.024 

Dev 

0.092 
0.05 1 
0.026 
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TABLE XI 

Twice Differentiable Weight 

n 1tr 

17 269 
33 224 
65 301 

Computed 
ratio 

1.972 
1.983 
1.994 

Dev 

0.098 
0.052 
0.028 

tity, W(r) G 1. With this setup, the only effects come from 
the reference-grid weight o(l). When a reference grid a( 5) is 
used to determine w(t), then 

45) = Q(t). (4.47) 

In this case, the Euler-Lagrange equation becomes 

Note that this equation is linear, so the code computes the 
solution in one nonlinear iteration. In addition, if both the 
first and second derivatives of r and c1 are differenced in 
the same way, then the solution produced by the code is 
r = cc; i.e., the reference grid is replicated. Compression by 
live orders of magnitude over nine grid points is trivial to 
achieve, the compression being limited only by machine 
word length. 

5. SURFACES 

Though development of grid generators for surfaces is 
analogous to that for curves, two functionals play a central 
role: one is for segment-length control, and the other is for 
cell-area control. A third functional for orthogonality con- 
trol is also implemented, but this is not as significant. One 
important point is that the solution-adaptive weights for 
each type of control must be chosen in a consistent fashion. 
A nice aspect of a reference grid is that the reference weights 
are always consistent. The discussion begins with a brief 
review of the material in [9] for surface-grid generation. Let 

v = v(r, s) = (x(r, ~1, y(r, s), z(r, ~11, 

define a surface. The problem at hand is 

O<r, s6 1, 
(5.49) 

to generate a new 
“continuum grid” by reparameterizing the surface, 

so that the resulting (continuum) grid has some desired 
properties. In terms of the reparameterization 

x(t, 9) =x(45, vl),s(L r)), 
~(5, v) = y(r(l, r), 45, v)), 
~(4~9) = 445, ~1, s(l, 9)). 
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(5.51) 

Then, the surface is also given by 

v = v(5, r) = (X(5, rl), Y(5, VI, 45, II)). (5.52) 

Here, x, y, and z are physical variables; r and s are 
parameter variables; and 5 and q are logical variables. 

The tangent vectors to coordinate lines are needed for the 
grid generation equations. The tangent vectors to parameter 
coordinates are 

a~ av -- 
dr’ as’ 

(5.53) 

while the tangent vectors to logical coordinates are 

(5.54) 

Now, the reference grid is two-dimensional, so let 

(44, VI, B(59 II)), 0<5, rid 1, (5.55) 

define a planar reference space. Then, after the grid is 
discretized, define the reference weight o, as the length 
of a parameter grid line in 5 direction, 

w,(51 r) = J#, r) + B:(5> VI. (5.56) 

The weight o2 is defined similarly, using the q derivative. 
There are two solution adaptive weights: W, for the 5 
direction, and W, for the q direction. 

5.1. Length Control 

The length functional is defined in terms of the surface 
metrics: 

P=P(r, s)= g 
il ~1 

2 

=(g)‘+(py+(t-$ (5.57) 

-ax ax I ay ay I az az 
ar as at-as &as’ 

2 

(5.58) 
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If 

F(r, s, a, b) = Pa2 + 2Qab + Rb’, 

then the functional to be minimized is 

The derivatives with respect to the parameter variables 
are difficult to compute, while the derivatives with respect to 

(5.60) the logical variables are easy to compute. Therefore, the 
former is eliminated in favor of the latter by using the chain 
rule 

1 W,(r, 3) a 1 
-- 

2 ~ F(r, s, rr, sg) 
o,(r, r) 

$‘j 

+ W2(ry s) a i 
(5.68) 

___ F(r, s, rq, s,,) 4 4. (5.61) -=- 
w2(5, VI as J 

In [9], the norms of tangent vectors to the logical- H ere J is the Jacobian of the transformation between the 
coordinate lines on the surface are given by (~$11) and the (r, s) variables, 

(5.62) 

so that, intuitively, the minimization problem produces 
grids with 

f3r as ig2-j 1 & as ’ 
(5.69) 

&%j 

IIT& a ys, IITJ a y$-$ (5.63) 
5.2. Area Control 

The area functional is defined in terms of the square of the 
element of surface area 

Introduce 

r,s,a, b)=~a2+2~ab+~b2, 
S(r, s) = J2 

(5.64) 

(; ;)+J2(; ;)+J2(; 5>. (5.70) 

r,s,a,b)=~a2+2~ab+~b2. (5.65) 

Then, the Euler-Lagrange equations for the minimization 
of the functional are: 

1 F(r,s,rc,sg)aW,+F(r,s,r,,s,)aW2 =- 
2 ( WI t% 02 ar > 

~~(r,s,r~,sc)+~~(r,s,r,,s,) , 
1 2 > 

(5.66) 

In logical coordinates, the chain rule gives the element as 

dmJ(; ;). (5.71) 

If each side of a cell is changed by a factor, then the area 
is changed by the product of the factors. Therefore, the 
product of the solution adaptive weights is used in the area 
algorithm. It is natural to use the areas of reference cells 
A(<, q) as a weight for the area functional. In the case where 
the reference grid is rectangular, A(<, q) = w,(& q) ~~(5, q). 
The grid is required to satisfy 

dmJ(; :)a A(5’9) 
JW,(r, s) W2(r, 3) 

(5.72) 

(see [9] for more details), and, consequently, the functional 

F(r,s,rc,sy)aW,+F(r,s,r,,s,)aW2 
as 02 as 

w, aF 
---(r,~,r~,s~)+~;~s(r,s,r,,s~) 

2 

to be minimized is 

1 S(r, s) W,(r, s) W2(r, s) J2 -- 
2 s A(& v) 

4 4. (5.73) 

(5.67) The Euler-Lagrange equations are 
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5.3. Orthogonality Control 

The orthogonality control attempts to keep the grid lines 

=g(sw’w2);, 
orthogonal by keeping the inner product of tangent vectors 

(5.74) to the grid lines zero (see [9] for more details). The 
orthogonality functional is also defined in terms of the sur- 

-$(Js~“>r~+t(JSWAIw2)ri face metrics P = P(r, s), Q = Q(r, s), and R = R(r, s) that are 
defined in the section on length control. The inner product 

1 3 12 of the two vectors tangent to the logical coordinate lines is 
=;; (SW, w+ (5.75) 

F= Pr<r,, + Q(r(s, + rqrC) + Rscs,,, 

The left-hand side of these equations can be put into 
symmetric form: so the integral to be minimized is 

+$(Js~w2s~)-&(Js~w2si> s F2 dt dq. 

=;;(sw’ w24, 
Let 

(5.76) 
Fr = P,rgr, + Q,(rtsv + rart) + R,s~s,,, 

-$(Js~“2r~)+t(Js~w2rl) F, = P,r<r,, + Q,(rSs7 + r,,r& + Rss5s,,, 

=g (SW, W2)G. 
and 

(5.77) 
A = Pr, + Qs,, B=Qr,+Rs,, 

These equations are in a symmetric “quasi-uncoupled” C=Pr,+Qs<, D=Qr<+Rs(. 

(i.e., nonlinear coupling only) form 

;1 ii Then the Euler-Lagrange equations are 

(5.82) 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

+~(+a,r:-B,r,)+Y(-BIrr+ylr,) all 

=g (SW, W2)5 (5.78) 
$(A2r~)+&(C2r,))+$(ABs~)+~(CDsv) 

= FF,, (5.88) 

+~(+a,sl-B2s,)+P(-82SC+Y2Sn) 
all $(ABri)+t(CDr,)+$(B2s,)+-$(D2s,) 

(5.79) = FF,. (5.89) 

where 5.4. Numerical Algorithm for Surfaces 

a1 = 
SW, w,s; 

A ’ 

SW1 w2s,s, 
PI= A 2 

The numerical algorithm generates a grid on the interior 
and boundary of the surface simultaneously; that is, the 

(5.80) 
interior and boundary Euler-Lagrange equations are solved 
using a simultaneous iteration. The interior grid depends 

SW, w,s; 
on the boundary grid but not conversely. The interior 

?‘I = 
algorithm uses a linear combination of length, area, and 

A ’ orthogonality control [9], while the boundary algorithm 

SW, W2r2 
is obtained by reducing the interior length control to the 

a2= 
A ’ 

boundaries. Both the interior and boundary algorithms use 
the reference grid and solution adaptive weights. 

82= 
SW, W2rtr, The boundary algorithm given by this approach differs 

A t (5.8l) from that for curves given in Section 4 of this paper. To see 

SW, W2rg 
this, compare the formulas for the reference grid weights for 

Y2 = 
curves (4.47) and surfaces (5.56). In the surface case there is 

A ’ a square root of a sum of squares that simplifies to a single 
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term in the curve case. In Section 4, this simplification was 
used while here it is not applicable. This results in the dif- 
ference formulas for the reference weights that differ by a 
truncation error. As a consequence, the reference grid will 
not be exactly replicated on the boundary, even in simple 
problems. The replication of the reference grid in the 
interior, especially for nontrivial examples, is even more 
difficult (see [2]). However, in rectangular regions, replica- 
tion is obtained up to a second-order truncation error, so 
that, in the limit, reference grids are reproduced exactly. 

Given an approximate solution for I and s, the right-hand 
sides of the Euler-Lagrange equations are evaluated using 
central differences. The left-hand sides are differenced using 
the schemes discussed in Section 2. This produces a system 
of nonlinear symmetric finite-difference equations for r and 
s. The coefficients of the difference scheme are evaluated 
using the current approximate solution. Then, the terms in 
the first equation that involve s as an unknown are lagged 
one iteration, while the terms in the second equation that 
involve Y are lagged. The resulting linear equations for the 
surface and boundary are solved using an SOR algorithm. 
(SOR is used for simplicity; other algorithms could be used 
to gain speed.) 

6. NUMERICAL VALIDATION FOR SURFACES 

First the convergence rate for the surface generator.is 
tested by using it to convert a distorted parameterization of 
the unit square to the identity parameterization x = r, y = s. 
Note that the unit square is a trivial surface and that the 
identity map is the obvious solution of the grid generation 
equations. In this test and the next, the reference weight and 
solution adaptive weight are set equal to one. In this case, 
the grid generator will try to produce a uniform grid. This 
is tested on two surfaces. The orthogonality functional is 
tested separately. Finally the reference weight and solution 
adaptivity are tested. The surface grid generator does 
perform well and is capable of producing suitable grids 
for a wide range of problems. Again, the performance of the 
algorithms is judged using the quality measures for length, 
area, and orthogonality. In general, the initial grid is 
equi-distributed in r and s. 

6.1. Convergence Rate 

The numerical scheme is second order, as the following 
test confirms. The problem used to test the convergence rate 
is a re-parameterization of the unit square, 

x=r+ 
sin(7rr) sin(7cs) 

2?T 1 

y=s+ 
sin(xr) sin(7cs) 

2lK ’ 
(6.90) 

z = 0, 

TABLE XII 

Convergence Rate for Surface Generator 

Dev- Dev- Max- Mean- Midpoint Midpoint 
n Itr length area angle norm norm x Y 

5 10 0.011 0.019 88.73 0.0080 0.042 0.50546 0.50546 
17 13 0.0031 0.0050 89.64 0.0022 0.022 0.50143 0.50143 
33 15 0.00088 0.0013 89.90 0.00060 0.012 0.50041 0.50039 
65 31 0.00065 0.00089 89.94 0.00043 0.018 0.50040 0.50031 

where 0 < r, s < 1. If the parameter space (r, s), is divided 
into equal squares, then the previous parameterization 
produces an irregular grid in the physical space. The 
algorithm changes this irregular grid to a uniform grid. 

The convergence rate test is done with the length and 
area functionals equally weighted, and the orthogonality 
functional omitted. The results are reported in Table XII. 
The nonlinear tolerance was set to lop5 while the linear 
tolerance was set to 10P6 with a maximum number of linear 
iterations being 100. The grid is n by n. The number of non- 
linear iterations needed to meet the tolerance is itr while 
dev-length is the normalized standard deviation of the 
lengths of the cell edges, dev-area is the normalized standard 
deviation of the cell areas, and angle gives a measure of 
the angles between the grid lines (see Section 2.1 for more 
details). 

The grid is supposed to converge to a uniform grid. 
The error is computed using both the maximum norm 
max-norm and the mean square measure mean-norm. The 
columns labelled x and The 

mean-norm column should remain constant for a second- 
order method. Also, note that the convergence of the center 
point is second order. 

6.2. Uniform Grids 

The results of the tests for two surfaces are presented: the 
first surface is a quardratic bump, while the second is a 
wave. The nonlinear tolerance was set to 1O-4 while the 
linear tolerance was set to lo-‘. The bump grid is 17 by 17 
while the wave is 21 by 21. The bump is given by 

x = r, y = s, z= 16s(r- l)r(s- l)s, (6.91) 

where 0 < r, s < 1 and E gives the height of the bump. 
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FIG. 1. (a) Bump of height 1; (b) Bump of height 100. 

Figure la gives the grid for E = 1 while Fig. lb gives the 
grid for E = 16. The algorithm generates grids for surfaces of 
any height (that is, at least for E = 1000). This is in agree- 
ment with the results for the quadratic curve where grids 
were generated on curves of arbitrary height for a 21 by 
21 grid (see Table II). Table XIII gives some data for 
these tests. Both the graphics and quality measures show 
that the grid is acceptable. 

TABLE XIII TABLE XV 

Data for Quadratic Curve Tests Bifurcation for a Wave 

Height 
E Itr 

Dev- 
length 

Dev- 
area 

n Bifurcation 

17 2.5 < E < 2.7 
21 2.5 GE i 2.6 
33 &>3.1 

1 7 0.15 0.23 
100 15 0.36 0.28 

TABLE XIV 

The Corner Angle at Y = s = 0 for the Wave Surface 

Height 0 
E (in degrees) 

0 78 
f 35 
1 21 
2 12 

The second surface is a wave that was previously intro- 
duced in [S] and also was studied in [ 111, 

x = r, 
r+s 

Y = s, z = 2+ E sin(n(r + s)), 
(6.92) 

where 0 Q r, s < 1. This surface is difficult to grid, partly 
because its corner angles become very acute as E increases 
(see Table XIV). The grid generated for this surface by 
previous algorithms [ 111 bifurcates for rather small values 
of E (E z 1 for a 21 by 21 grid). The new algorithm does 
much better. 

The bifurcation point in E is located by observing the 
number of nonlinear iterations needed for convergence. 
Before the bifurcation point, the number increases with E; 
while after the bifurcation, the number decreases. See 
Table XV for the dependence of the bifurcation point on the 
size of the grid. The results presented after Eq. (4.38) show 
that the bifurcation point for the boundary curve is larger 
than for the full algorithm, so the bifurcation point is deter- 
mined by the interior algorithm. In a 33 by 33 grid, the algo- 
rithm becomes unstable before the bifurcation point; the 
algorithm can be stabilized using under-relaxation (a factor 
of 1 was used). (Recall that a relaxation factor also had a 
significant impact on the convergence of the curve algo- 
rithm.) In this case, the bifurcation point satisfies E > 3.1. 
This represents a significant improvement over all other 
algorithms tested. 

To clearly demonstrate the quality of a 21 by 21 grid that 
is generated on the wave for E = 2, three views are presented 
in Fig. 2. The views show that the grid is uniform. A grid is 
also generated for E = $, but is not presented as it looks like 
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a b 

FIG. 2. Three views of a wave. 

TABLE XVI the one for E = 2, only a bit better. Data from these com- 

Data for the Wave 
putations is presented in Table XVI (a nonlinear relaxation 
factor of i and a uniform initial grid was used). 

Height Dev- Dev- Dev- 
E 1tr length area angle 6.3. Orthogonality 

I 

; 
21 0.022 0.10 52 

The orthogonality control (with no length or area con- 
64 0.059 0.16 20 trol) is used to generate a grid on a section of a sphere of 

radius one: n/4 < C$ < 3144, 0 < 0 < rc, where I$ is the polar 
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angle and 8 is the equatorial angle. Spherical coordinates 
are used to parameterize the sphere; this parameterization 
produces orthogonal coordinates, so the code does not 
move the points. 

Also, the orthogonality is tested by repeating the run in 
the convergence rate test, where n = 17, with length, area, 
and orthgonality equally weighted. Note that the limit grid 
in this problem is orthogonal. The orthogonality control 
changes the generated grid by less than 5 % (some change 
on the order of truncation error is to be expected). 

6.4. Reference Grid Tests 

To test the reference grid portion of this algorithm, the 
surface is set to the unit square (so the metrics are trivial) 
and the solution adaptive weight is set to one. Tests run for 
17 by 17 grids in a square planar region typically converge 
to machine precision in two or, at most, three nonlinear 
iterations. (The equations are no longer linear because of 
the area and orthogonality controls.) For the data in 
Table XVII, the grids were converged to full machine preci- 
sion. The reference grid is rectangular with an exponential 
compression along one side. The spacing goes from 2- ’ to 
2- n+ ‘, where n is the number of intervals in the logical 
direction where the grid is being compressed (in this case, 
from 0.5 to 0.0003). As discussed before, the reference grid 
is not exactly replicated. However, the ratios of the grid 
length are very accurate. In Table XVII the column 
headings, dev-length, dev-area, and dev-angle, are quality 
measures, while the row headings tell which controls are 
turned on (all means length, area, and orthogonality). The 
grids produced by each of the tests are nearly identical. 

Because the code converges so fast when a reference grid 
is used, it is worthwhile to put as much information as 
possible in the reference grid rather than in the solution- 
adaptive weights. 

6.5. Solution Adaptivity Tests 

The solution adaptivity is first tested by using the 
exponential weight given in Eq. (4.40) in one of the logical 
directions, while the weight in the other direction is taken as 
one. In the logical direction where the exponential weight is 
used, the grid is essentially identical to the grid computed 

TABLE XVII 

Reference Grid Tests 

17x 17 

Length control 
Area control 
Length & area controls 
All controls 

Dev- Dev- Dev- 
length area angle 

0.0305 0.0610 90.00 
0.0303 0.0610 90.00 
0.0304 0.0609 89.99 
0.0305 0.0610 89.99 

TABLE XVIII 

Exponential Solution-Adaptive Weights 

Dev- Dev- Dev- 
n length area angle Itr 

17 0.02 1 0.054 89.98 6 
33 0.011 0.026 89.89 6 
65 0.010 0.0060 89.52 15 

by the curve generator, while in the direction where the 
weight is one, the grid is uniformly spaced. This is true for 
length, area, length and area, and length and area and 
orthogonality controls. As the results are essentially the 
same as those in Table V, they are not presented. 

The next test, presented in Table XVIII, uses an exponen- 
tial weight in each logical direction, 

(6.93) 

where a = b = 4 and x0 = y, = f. Equally weighted length, 
area, and orthogonality control is used. If the orthogonality 
control is removed in the n = 65 case, then the algorithm 
converges in 13 iterations. 

7. COMMENTS 

Planar regions are special cases of surfaces, so the surface 
grid generator can be used to grid such regions. However, 
some explicit parameterization of the region, where the 
parameters range over a square, is needed. If the planar 
region is assumed to be in the x - y plane, then 

x = r, Y = s, z = 0. (7.94) 

gives a one-to-one and onto map of (r, s) to (x, y). 
However, the domain of the mapping is not necessarily 
square. 

In fact, the theory given in Section 5 does not depend on 
the domain being a square, so it can be applied using the 
mapping (7.94). In this case, the surface metrics and 
Jacobian are trivial: 

P= 1, Q=O, R= 1, J= 1. (7.95) 

Now there is no longer a need for the explicit surface 
parameterization, because the information given in (7.95) is 
all that is needed in the formulas used in Section 5. 

This information was used to convert a surface code to a 
planar code. 

Next, we note that the continuum grids do not depend 
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on the parameterization. The variational problems are all 
derived from proportionalities (see (3.31), (5.63), and 
(5.72)), which are defined in terms of quantities that do not 
depend on the parameterization. The geometric quantities 
are defined in terms of the logical variables, namely, lengths 
of tangent and normal vectors and thus do not depend on 
the parameterization. It is a simple exercise to confirm this 
using the chain rule. The solution adaptive weights are 
defined in terms of the physical variables (the parameteriza- 
tion only appears implicitly) and the reference grid only 
involves the logical variables. Thus, for a given functional, 
its value only depends on the geometric object, the solution 
adaptive weight, and the reference grid. If the parameteriza- 
tion of the object is changed, the values of the functionals do 
not change. 

If the minimization problem that involves linear com- 
binations of the functionals always possessed a unique solu- 
tion, then the continuum grids would always be unique. The 
existence and uniqueness for curves is shown in Steinberg 
and Roache [ 111. Similar results are available for the length 
functional in higher dimensions for some geometries (see 
Dvinsky [4]). Partial results for the area functional are 
given in [2, 33. 

On the other hand, the discrete grid-generation algorithm 
does explicitly depend on the parameterization because 
the parameterization is used to compute many quantities; 
that is, when the parameterization is changed the values 
of the functional changes even if the discrete points on 
the geometric object do not change. When the discrete 
grid-generation equations have multiple solutions, then 
the generated discrete grid can change if anything in the 
algorithm is changed, for example, the initial data or 
the parameterization. Numerical evidence indicates that the 
discrete equations possess a unique solution for sufficiently 
high resolution. However, there are no mathematical results 
to justify this. 

The convergence rate tests clearly demonstrate that the 
solutions of the discrete equations do depend on the 

parameterization. In these tests, when intervals or squares 
are parameterized in different ways, the generated grids are 
different. However, numerically, the solutions of the grid- 
generation equations have second-order convergence. Note 
that the difference schemes are clearly second order. Thus 
the numerical evidence indicates that generated discrete 
grids which well resolve the geometry, essentially. do not 
depend on the parameterization. 

Unfortunately, the mathematical possibility exists that 
there is a continuum problem which has a unique solution 
and for which every discrete approximation, no matter how 
high the resolution, has multiple solutions. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Il. 

12. 

13. 

14. 

REFERENCES 

R. Arina, in Numerical Grid Generation in Computational Fluid 
Mechanics ‘88, Miami, Florida, 1988, edited by S. Sengupta et al. 
(Pineridge Press, Swansea, 1988), p. 351. 

J. E. Castillo, Thesis, Department of Mathematics, University of 
New Mexico, 1987 (unpublished). 

J. E. Castillo, S. Steinberg, and P. J. Roache, J. Comput. Appl. Math. 20, 
127 (1987). 

A. S. Dvinsky, in Numerical Grid Generation in Computationaf Fluid 
Mechanics ‘88, Miami, Florida, 1988, edited by S. Sengupta et al. 
(Pineridge Press, Swansea, 1988), p. 351. 

P. Eiseman, Appl. Math. Comput. 21, 233 (1987). 

P. Knupp, Thesis, Department of Mathematics, University of 
New Mexico, 1989 (unpublished). 

VAX UNIX MACSYMA Reference Manual, Version 11 (Symbolics, 
Inc., 1985). 

J. Saltzman, .I. Comput. Phys. 63, 1 (1986). 

S. Steinberg and P. J. Roache, Numer. Methods PDEs 2, 71 (1986). 

J. E. Castillo, S. Steinberg, and P. J. Roache, Appl. Math. Comput. 28, 
155 (1988). 

S. Steinberg and P. J. Roache, J. Comput. Phys. 91, 255 (1990). 

S. Steinberg and P. J. Roache, Technical Report, Department of 
Mathematics, University of New Mexico, 1990. 

J. F. Thompson, 2. U. A. Warsi, and C. W. Mastin, Numerical Grid 
Generation (North Holland, New York, 1985). 

Z. U. A. Warsi, J. Comput. Phys. 64,82 (1986). 


