
JOURNAL OF COMPUTATIONAL PHYSICS 100, 163-l 78 (1992)

Variational Curve and Surface Grid Generation*

STANLY STEINBERG

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131

AND

PATRICKROACHE

Ecodynamics Research Associates, Inc., P.O. Box 8172, Albuquerque, New Mexico 87198

Received July 26, 1989; revised August 21, 1991

Variational algorithms that control the lengths of grid lines, cell
areas, and the orthogonality of grid lines can be used for generating
boundary-conforming grids on surfaces. Additional geometric control
is provided by using a reference grid, while solution adaptivity is
achieved by using weights. In a typical application, the reference grid
can be used to produce an exponential compression of the grid at a
boundary, while the solution adaptive weights are used to make the
grid spacing inversely proportional to the gradient (when the gradient
is large) of some solution being computed on the grid. The grid is
adapted on both the interior and boundary of the surface. The algorithm
performs these tasks with exceptional precision, as demonstrated in the
examples presented here. 0 1992 Academic Press, Inc.

CONTENTS

1. Introduction.
2. Preliminaries. 2.1. Quality measures. 2.2. Symmetric differencing.

2.3. Symmetric difference equations.
3. Curves. 3.1. Numerical algorithm for curves,
4. Numerical validation for curves. 4.1. Convergence rate. 4.2. Equal

spacing. 4.3. Solution adaption. 4.4. Reference grids.
5. Surfaces. 5.1. Length control. 5.2. Area control. 5.3. Orthogonality

control. 5.4. Numerical algorithm for surfaces.
6. Numerical Validation for Surfaces. 6.1. Convergence rate. 6.2.

Uniform grids. 6.3. Orthogonality. 6.4. Reference grid tests. 6.5.
Solution adaptivity tests.

7. Comments.

1. INTRODUCTION

In the paper [9], the authors present a new variational
algorithm for generating grids on surfaces. The paper
emphasizes the development of algorithms based on direct
geometric intuition. Functionals for controlling the length
of grid lines, areas of grid cells, and angles between grid lines
are introduced, as well as reference grids which are used

* This work was partially supported by the Office of Naval Research and
the Army Research Office.

to highly compress the grids along boundaries (see also
[2, 31). Solution adaptive weights are not discussed, but
can be easily added to the theory (as is done in this paper).

In some applications, the surface grid generator has con-
vergence difficulties for surfaces of modest shape. These dif-
ficulties are, in fact, a result of a bifurcation of the solution
of the discrete grid-generation equations [111. The results
described here show how to formulate the discrete
approximations to the Euler-Lagrange equations for the
variational problem so that the bifurcation is either
eliminated or significantly delayed, and thus grids can be
generated on most surfaces of interest. The main idea is to
keep the Euler-Lagrange equations symmetric. Because
these equations are nonlinear, there are certain subtleties
involved, particularly for the area functional.

For several years, the authors have been using numerical
geometric quality measures to judge the performance of
numerical grid-generation algorithms. A description of
these measures has not been published; therefore, some
information is included here. The measures are far more
critical than graphical displays, so only a few plots are
shown in the paper. (The plots look exactly as one would
imagine.)

The main points of this paper are: (1) simple geometric
intuition is used to create a variational problem for gener-
ating grids with certain desired properties; (2) appropriate
discretization of the Euler-Lagrange equations for the
variational problem produces algorithms adequate for
generating grids; (3) grid quality measures should be used
to judge the success of the algorithm; (4) and the generated
grids satisfy the desired intuitive criteria. In fact, the algo-
rithms match intuition exceptionally well and this makes
them relatively easy to use.

A related variational algorithm is introduced by
Saltzman [S] and a differential-geometric approach is
considered by Warsi [14]. Grid generation on curves

58l/loo/l-I2

163 0021-9991/92 $5.00
Copyright 0 1992 by Academic Press, Inc.

All rights of reproduction in any form reserved.

164 STEINBERG AND ROACHE

is discussed by Eiseman [S]. Over 30 grid-generation
algorithms have been considered by Knupp [6]; the most
promising are being extended to surface-grid generators.
Also, Arina [1] discusses adaptive orthogonal coordinates.

Most of the algorithms that are important for surface-
grid generation also apply to curve-grid generation. The
curve problems are simpler to analyze, implement, and
study numerically. Consequently, this paper begins with a
discussion of curves and then extends these results to
surfaces. Moreover, planar regions are a special case of
surfaces, so the surface algorithm is specialized to this case.
This special algorithm eliminates the need to parameterize
the full region and is more efficient than the general surface
algorithm.

Previously, two variational curve grid-generation algo-
rithms have been studied by the authors [1 I]. These algo-
rithms are derived by first solving the Euler-Lagrange equa-
tion for the second derivative term and then discretizing the
resulting equation (see Eq. (2.37) and (2.45) of [111). When
the equation is solved for the second derivative term, a first
derivative term is created and this then results in an asym-
metry which causes serious problems. In this paper, the
Euler-Lagrange equation is left in symmetric form and
is differenced in such a way that the resulting discrete
equations are symmetric when Q and W are constant (see
Eq. (3.33) below). This results in a substantial improvement
in the algorithm. In addition, reference grids and solution
adaptivity are consider in this paper but were not con-
sidered in [111.

This paper is organized as follows: first, the quality
measures and symmetric differencing are described. Second,
curve grid generation is presented, and a solution adaptive
weight is introduced. This is followed by a set of numerical
experiments, which show that the grid-bifurcation problem
is less significant and that the algorithm does reference and
solution adaption as predicted by the theory. In fact, the
algorithm produces grids of exceptional quality; however,
for certain solution adaptive weights convergence is
delayed. Changes in the algorithm to reduce this problem
will be considered in the future. Third, surface grid genera-
tion is described and numerically tested. Only a few tests are
needed to confirm that the surface results are consistent
with the curve case. The reduction of the surface algorithm
to a planar algorithm and the dependence of grids on the
parameterization are discussed in Section 7.

2. PRELIMINARIES

Two general ideas are critical to this work. First, the
numerical algorithms perform better if the main parts of the
differential equations that are used to compute the grids are
kept in symmetric form, and this symmetry is preserved
in the difference equations. Moreover, the quality of the
generated grids is best judged by using numerical measures

closely related to the variational principals that are used to
generate the grids.

2.1, Quality Measures

The geometric properties of the grids are measured using
averages and deviations. As discussed below, the variational
methods provide algorithms with direct geometric intuition;
how well the intuitive requirements are met is estimated
using these measures.

The curve grid generator attempts to divide a curve into
n segments, where the length of the grid segments L, are
required to be proportional to some given quantities a,, that
is, L, cc a,, 1 < Id n. In this case, an average value is defined
by

aver = i ,g, 2. (2.1)

Then the deviation from the average is defined by

dev=’ (l/n) CY= 1 (WaJ - aver)’
aver (2.2)

In the case of surfaces, two length deviations are com-
puted. One is for segments in the first logical direction, and
another is for the second logical direction. The code reports
the average of the two deviations.

Like the length control, the area control is supposed to
produce grids where the area of each cell A I is proportional
to some given quantities 6,. So again, if there are m cells, an
average value is defined by

(2.3)

and the deviation is defined as it is in the length case. The
area of a cell is measured by the magnitude of the cross
product of two edge vectors for a pair of adjoining edges.

If the deviation is normalized by the average, then
100 * dev represents a percentage deviation or error. It is
easy to see that, if the deviations are all approximately the
same as the average, then the deviation is about 1 or 100 % .
This is not good and means that the algorithm is failing to
generate a reasonable grid. If the deviation is about 0.1 or
10%) then the method has a significant effect. However,
defects in the generated grid can be seen graphically. If the
deviation is about 0.01, then the intuitive requirements are
well satisfied and the grid defects are not noticeable graphi-
cally. Experience indicates that grids with a quality measure
less than 0.3 are adequate.

The orthogonality control is supposed to produce
orthogonal grids. If the grid is nearly orthogonal, then
the cosines of the angles between the grid lines are

GRID GENERATION 165

approximately zero and, consequently, the average of the
cosines should be close to zero. Thus there is no need to
calculate an average value; only a deviation is needed.
Because the average value nearly is zero, it is not reasonable
to normalize the deviation by the average. If 6,, 1 d I < m,
are the angles between the grid lines, then the deviation of
the cosines of the angles is defined by

dev =
J

(2.4)

The code reports arc cos(dev) in degrees.
Note that quality measures, for grids that are good, are

computed by subtracting nearly equal numbers. On single
precision machines, this leads to significant relative errors,
so only the order of magnitude of the quality measures is
considered significant.

2.2. Symmetric Differencing

As shown below, it is possible to write the principal part
of the Euler-Lagrange equations for the grid-control
functionals in a symmetric form. The notion of symmetry
corresponds to the concept of formally self-adjoint
operators when the operators are linear. Because the
operators that appear in the grid-generation problem are
nonlinear, the symmetry conditions are written explicitly
below. Numerical experimentation shows that discretizing
the symmetric differential equations so that the resulting dif-
ference equations are also symmetric substantially improves
the numerical algorithms. The symmetry conditions written
explicitly below correspond to the coefficient matrix of the
difference scheme being symmetric. See [12] for more
details on symmetric differencing.

Differential equations are written in the logical variables
(5, q), so these variables are used to describe the symmetric
differences. Define the half-step central-difference and
central-average operators by

Scf~~,‘1)=f(5+A~/2,?)-f(~-Ag/2,9)
A5

7

6 f(5 ~)_f(5,rl+A~/2)-f(5,?-49/2)
q ’ 4

~:f(5,rl)=f(5+Ai”/2,s)+f(~-A~/2,?)
2 5

~ f(5 ?)_f(5,?+411/2)+f(5,rl-Ar1/2)
‘I ’ 2

(2.5)

(2.6)

(2.7)

(2.8)

Note that the full-step central-difference operator can be
written in terms of the half-step difference and average,

(2.9)

Most terms in the grid generation equations can be
differenced using the following rules:

x 6SP<(443 ?)@,P,f(5, rl))). (2.11)

The mixed-derivative term is not symmetric. However, the
combination

is symmetric; the second rule applied twice to this expres-
sion produces a symmetric difference expression.

The area-control differential equations contain unusual
terms; for example, the above rules do not apply to

(2.13)

Again, such terms occur in pairs, with the 5 and q
derivatives interchanged. Such combinations are differenced
to produce symmetric schemes using the rule:

=:q 65((PtP,453 V))(Pq 6, St53 v))
x (IQ 6, A53 V))(PLc S,f(L VI)). (2.14)

This rule is derived from techniques which are explained in
[12]. The above rule does not immediately produce a
nearest neighbor scheme, but a scheme can be generated by
replacing A< by At/2 and A? by 4~12.

2.3. Symmetric Difference Equations

The above rules are used to produce difference equations
by replacing the At notation by an index notation. In one
dimension, the stencil (i.e., coefficients of the difference
scheme) names are 1, c, and r with the meanings “left,”
“center,” and “right.” The equations that are solved have the
form

lifi- I+ ci.L +rif,+ 1 = gi9 2<i<n- 1. (2.15)

Here Zi, ci, ri, and gj are given for 2 < i < n - 1, while fi,
1 d i<n, are computed. Two additional conditions are

166 STEINBERG AND ROACHE

needed. They are given by the boundary conditions, which
are Dirichlet conditions of the form fi = a, f, = b, for grid-
generation equations on regions with fixed boundaries. The
stencils Zi, ci, and ri are needed for 2 < i < n - 1. The system
of difference equations is said to be symmetric, if

lj=ri-1, 3<idn-1. (2.16)

Thus, all of the lj can be computed from I, and ri.
In two dimensions, the stencil names are lu, U, ru, Z, c, r,

Zd, d, and rd with the meanings “left upper,” “upper,” and so
forth. A general nearest-neighbor difference equation for
one unknown function, &, 1 < id m, 1 <j< n, has the
form

l”i,jfi-I,j+l+Ui,,fi,j+l+rui,jfi+l,j+l

+li,jfi-l,j+ci,~fi,j+ri,jfi+l,j

+ldi,jL-l,j-~ +di.jL,j-1

+ rdi,jfi+ l,j- I = gi,j, (2.17)

for 2 d i < m - 1, 2 < j d n - 1. These difference equations
are symmetric, provided that

li,j=ri-ll,,, 3<i<m--1,

26jdn-1, (2.18)

di,j= ui,j- 1, 2<i<m-1,

3<jdn-1, (2.19)

lu,j= rdi- l,j+ 19 3<idm--1,

2< j<n-2, (2.20)

Idi,=rui-1 j-1, 3<ibm-1,

3<j<n-1. (2.21)

The stencils 1, d, lu, and Id are computed from these
equations and from 12, j, d,, , lu,, j, lui,, ~ 1, Id,, j, and Idi,, .
Again, for more details, see [121.

3. CURVES

In the paper [9], the authors use geometric intuition to
derive variational principles for generating grids on curves,
surfaces, planar regions and in volumes. For curves, all prin-
ciples are essentially the same. In [111, the authors study
two algorithms for numerically solving the Euler-Lagrange
equations for the variational principle and show that these
algorithms have a serious bifurcation problem that severely
limits their usefulness. In this section, a new algorithm is
introduced that preserves the underlying symmetry of the
variational principle. This either eliminates or significantly
delays the bifurcation problem. In addition, the reference

grid and solution adaptivity parts of the algorithm are
shown to work exceptionally well (this was not considered
in [111). For more motivation, details, and notation, see
Steinberg and Roache [9, 111.

A curve in three-dimensional space is described
parametrically,

v(r) = (x(r), y(r), z(r)), Odr<l, (3.22)

and is assumed to be smooth. The metric is needed in the
grid generation equations and is defined by

Q(r)= y ’
II II

= (x’(r))2 + (y’(r))‘+ (z’(r))2. (3.23)

(Several notations are used for derivatives: dx/dr z x, E x’.)
Recall that the length of an element of the curve is given by

J’&? dr. (3.24)

Note that any parameterization provides a discrete grid
when discrete increments in the parameterization variable
are used to step out discrete points. This leads naturally
to the powerful concept of the parameterization being a
“continuum grid.” A new continuum grid is generated by
calculating a re-parameterization of a curve in the form

r= r(t), O<(<l. (3.25)

In these discussions, the variables x, y, and z are called
physical; r is called parameter, and 5 is called logical. In the
logical variable, the length of an element is

JQ(r) r’(5) dt. (3.26)

Both a reference grid (see [9]) and a solution adaptive
weight are used to control the grid. If a one-dimensional
reference grid is given by a(t), 0 < 5 d 1, then the derivative
w = CC’ is needed in the grid-generation equations. The
reference grid is typically used to obtain an exponential
compression of the grid near a boundary by choosing u as
an exponential. The use of solution-adaptive weights has
not been discussed in our previous work, but the theory
provided in [9] makes it easy to set up the required varia-
tional problem. Let u = u(x, y, z) be the solution of some
physical problem for which an adaptive grid is desired, and
let

u(r) = 4x(r), y(r), z(r)).

Recall that the chain rule gives

ut = u,/rt .

(3.27)

(3.28)

GRID GENERATION 167

Whether or not the weight W depends on r is critical in the
variational problem, so set

u,(r) 2 W(r)=l+a -
() r’

which is, in fact,

W(r) = 1 + a(uS)2. (3.30)

The addition of 1 is used to keep the weight constant when
the derivative of u is small and to keep the weight from
becoming zero. The a is for scaling. Note that @=a~,
when ug is large.

The main idea is to produce grids on the curve so that the
grid spacing is proportional to the spacing of the reference
grid and inversely proportional to a derivative of the
solution,

(From now on, assume r = r(t).)
The appropriate variational integral (see [9]) for

generating such a grid is

(3.32)

The factor in front of the integral is used for convenience.
The Euler-Lagrange equation
integral is

for the minimization of this

1 J+‘(r) aQ(r) + Q(r) aW(r)
=2 w(5)ag (--

Note that the left-hand side of the previous equation er- 1
(principal part) is symmetric. x=-------

e-l’ It is easy to see that, in the case of curves, the
Euler-Lagrange equation is integrable; assuming all func-
tions are positive, one integration gives

ln(r + 1)
(4.35)

X=ln(2)’
y=o, z=o,

rg m=,,,,,

45)
7 (3.34)

which confirms the intuitive discussion given above. This
information is not used in the following discussion, because
the surface Euler-Lagrange equations are not integrable; we
want the methods that we use for curves to extend to the
surface problem.

3.1. Numerical Algorithm for Curves

The Euler-Lagrange equation (3.33) is solved iteratively.
Given an approximate solution for r = r(t), the right-hand
side of Eq. (3.33) is evaluated using central differences. The
left-hand side of (3.33) is differenced by using the schemes
discussed in the Section 2.3 on symmetric differencing. This
produces a system of nonlinear symmetric finite-difference
equations for r. The coefficients of the nonlinear scheme are
evaluated using the current approximation for the solution.
Then, the resulting linear difference equations are solved,
using Gaussian elimination without pivoting (using a
standard tridiagonal solver).

4. NUMERICAL VALIDATION FOR CURVES

The curve grid-generation algorithm produces a grid that
is the best possible solution, in the least squares sense, of the
proportionality given in the previous section. How well the
algorithm does this is what is tested in this section. Note
that the theory is given in the continuum, so it is expected
that the proportionality will be off by a truncation error,
and these discrepancies will decrease with increasing grid
resolution. The grid length-quality measure is used to
evaluate the numerical results.

Unless otherwise stated, all computer runs are done: with
no relaxation factor in the nonlinear iteration; with a stop-
ping criterion of the grid changing less than one part in 105;
and with a random grid as a starting point for the nonlinear
iteration. The convergence requirements are far more
stringent than the requirements for productions codes.
Recall that previous algorithms show anomalous behavior
[111. The question is: how well are those problems con-
trolled?

4.1. Convergence Rate

The numerical scheme is second order, as the following
tests confirm. The problems used to test the convergence
rate are re-parameterizations of the unit interval

y = 0, z = 0,

where 0 <r < 1. If the parameter space r is divided into
equal segments, then the previous parameterizations
produce (significantly) irregular grids in the physical space
x (y and z are trivial). The algorithm changes each of these
grids to a uniform grid in physical space.

The data in Table I was computed by starting with a
uniform grid in parameter space and then forcing the
convergence to full machine precision. The results for the

168 STEINBERG AND ROACHE

TABLE I

Convergence Rates for the Curve Generator

Exp Log

n n-Max n-Dev Ratio n-Max n-Dev Ratio

5 0.1188 0.2839 1.030 0.01587 0.03549 1.004
9 0.1089 0.2620 1.010 0.01310 0.03002 1.001

17 0.09943 0.2429 1.003 0.01170 0.02701 1.000
33 0.09389 0.2311 1.001 0.01019 0.02352 1.000
65 0.08953 0.2187 1.000 0.009947 0.02710 1 .ooO

129 0.1399 0.4682 1 .OQo 0.04959 0.2430 1.000

exponential map are given in columns two through four
while the results for the logarithm are presented in columns
live through seven. Because the algorithm is second order,
some quantities are normalized by multiplying by the
square of the number of grid points so that the resulting
column will be nearly constant. In this table, n is the number
of grid points, n-max is the maximum norm of the difference
between the identity map and the computed grid multiplied
by n2, n-dev is the deviation of the grid lengths multiplied by
rz’, and ratio is the ratio of the lengths of the longest and
shortest segments. In the last row, where n = 128, the single
precision arithmetic is beginning to contaminate the results.
The test clearly confirm that the algorithm is second order.

4.2. Equal Spacing

One of the goals of this work is to develop an algorithm
that generates quality grids on a nominal curve (height one,
width one). A parabola

y=4sr(l-r), x = r, z=o, O<rdl, (4.36)

of height E is used for a test curve. The simplest type of grid
is one that has equal segment lengths. The algorithm
generates such a grid, if the weights are made trivial:
W(r) E 1 = w(r). In Table II, E = 1, n is the number of grid

TABLE II

Nominal Curve

n 1tr Dev

3 2 0.0000
5 14 0.1245
9 25 0.075

17 29 0.032
33 42 0.010
65 46 0.003

129 54 0.0007
257 61 0.0002
513 55 0.0001

TABLE III

Bifurcation Values

n Value

21 co
41 3.50 GE 6 3.75
81 3.25 GE < 3.50

161 3.75 GE < 4.25

points, itr is the of number nonlinear iterations used, and
deu is the deviation of the grid lengths. This table shows that
the algorithm under consideration does its job well. Note
the decrease in dev with resolution; in fact,

dev cc l/n. (4.37)

This relationship holds in a wide range of examples.
Previous versions of this algorithm have bifurcation

problems [111. In the algorithm presented here, this
problem is significantly reduced. Again, this difficulty is
studied using the parabola (4.36). Typically, for a given
number of nodes, the solution to the discrete equations
bifurcates for sufficiently large E. Table III gives bifurcation
values for the new algorithm. The first column gives the
number of grid points, while the second column gives an
estimate for the value of E at which the solution of the non-
linear equations bifurcate. The value of E was resolved in
increments of 0.25. For large n, the values of E given by this
algorithm are twice as good as the values given by any other
version of the algorithm; the performance for coarse grids is
exceptional.

Table IV illustrates the lack of bifurcation for a grid con-
taining 21 points. Here E is the height of the curve. As before,
itr is the number of nonlinear iterations, and deu is the
deviation of lengths.

Additional tests were run on the curve

x = r, y = 0, 2 = i + E sin(7cr), Odrdl, (4.38)

TABLE IV

No Bifurcation

E 1tr Dev

0.25 10 0.001
0.50 22 0.004
1.00 27 0.022
2.00 51 0.064
4.00 125 0.091
5.00 140 0.094

10.00 170 0.102
20.00 182 0.103

GRID GENERATION 169

TABLE V TABLE VI

Tall Curve Exponential Weight

n 1tr Dev Bifurcation

3 2 0.000 No
5 16 0.186 No
9 38 0.154 No

17 111 0.114 No
33 107 0.103 Yes
65 >400 1 Yes

II 1tr

17 13
33 13
65 13

Prescribed Computed
ratio ratio

2.0 1.782
2.0 1.883
2.0 1.939

which appears as the boundary values of a surface used to
test the surface grid generator. This curve is more difficult to
grid than the quadratic, but the results are still rather
similar, so not much is presented here. In the case where
n = 21 the bifurcation point occurs for E > 10.0. If a non-
linear relaxation factor of 4 rather than 1 is used, then the
number of nonlinear iterations needed to meet a nonlinear
tolerance of lop4 is reduced by a factor of three.

For the quadratic curve, Table V illustrates the bifurca-
tion of the grid for E = 25 (the height of the curve is 25, while
its width is 1). The last column indicates if the grid has bifur-
cated (Note. The iteration count decreases after the bifurca-
tion). Also, note that deu decreases with increasing resolu-
tion.

weight depends implicitly on r. Our goal is to provide algo-
rithms that can adjust grid length by an order of magnitude.
However, adjusting the grid by a factor of two is significant,
particularly in multi-dimensional problems. In the following
tables, n is the number of points in the grid, itr is the number
of nonlinear iterations (recall that the convergence criterion
is strict), prescribed ratio (= R) is the ratio the maximum to
minimum values of the prescribed weight, computed ratio
is the ratio of the maximum to minimum length of the
computed grid, and dev is the deviation of grid lengths.

Recall that if the ratio of the maximum to minimum value
of the weight is R2, then the ratio of the maximum to mini-
mum grid lengths should be R. First, the response to a
modest skewed weight is tested. In Table VI the weight is
taken as a Gaussian exponential with R = 2,

It is, of course, desirable to have an algorithm that has
no bifurcation. Numerous algorithms are being tested (see
[6]); most show significant anomalous behavior that
involves either the existence of multiple solutions or bifurca-
tion of the solution of the nonlinear equations, A few show
promise and are undergoing further testing. None of the
promising algorithms do equi-spacing, but rather, they
attempt to produce a “quality” grid. As far as we know, the
algorithms presented in [8, 143 have not been tested for
such problems.

W(()=e-““‘5)-2/5P,

50 W) ~ 3 85
(4.40)

a=7-- . .

4.3. Solution Adaption

To test the solution-adaptive part of the algorithm, a
trivial curve,

(Note that x = r.) As the values in the Table VI show, the
algorithm performs very well, because the computed ratio
rapidly approaches the prescribed ratio 2. Also, the devia-
tions are good and improve with increasing resolution.

For Table VII a symmetric, but stronger weight with
prescribed ratio R = 10 is used. The symmetry guarantees
that the center point of the solution grid is at the center of
the interval. This is checked to guarantee that the grid has
not bifurcated. The weight is

x = r, y = 0, z = 0, Odrdl, (4.39)

W(t)=e- 8 In(R)(x(S)- 1/2)2
2

TABLE VII

is used, and the reference grid is set to the identity, o(l) z 1.
With this setup, the only effects come from the solution-
adaptive weight W(r). Two types of weights are considered:
exponential and polynomial. The exponential weights are
used to model smooth adaptivity functions while the poly-
nomials are used to model less smooth adaptivity functions.
Also, the weights are given as functions of 5. However, when
a value of the weight is looked up: (1) r = r(5) is computed;
(2) the values of (x(r), y(r), z(r)) are found; and (3) the
value of the weight is found. Therefore, the value of the

Exponential Weight

Prescribed Computed
n Itr ratio ratio Dev

9 12 10.0 2.811 0.33
17 7 10.0 4.189 0.20
33 8 10.0 5.712 0.11
65 7 10.0 7.153 0.06

129 7 10.0 8.306 0.03
257 7 10.0 9.071 0.02

Dev

0.04
0.02
0.01

(4.41)

170 STEINBERG AND ROACHE

TABLE VIII TABLE IX

Trouble Values Continuous Weight

n Itr

9 20
17 18
33 20

Prescribed
ratio

13.6
35.0
38.5

Computed
ratio Dev

3.036 0.36
6.219 0.29

10.020 0.19

n Itr

17 110
33 124
65 133

Computed
ratio

1.980
1.989
1.996

and the nonlinear tolerance for the next two tables is
one part in 103. For such a strong adaptivity function, the
number of iterations is small, the ratios are good and
converge to the correct value, and the deviations are
reasonable.

It is not possible to use the symmetric algorithm for
an arbitrary weight. In Table VIII the value R of the
prescribed ratio is increased until the code has problems,
typically floating point exceptions or iterative divergence.
The column labelled prescribed ratio indicates a value of R
just below where the code has problems. This is not a bifur-
cation point, because the nominal algorithm described in
[111 can be used to generate grids for much larger values of
the prescribed ratio. Unfortunately, the nominal algorithm
does not generalize to surfaces. The values of ratio and Geu
are not particularly good, because the algorithm is being
pushed to its limits.

For the polynomial examples, the weight functions are
chosen so that R = 2. The weight function W is chosen as a
piece-wise polynomial, so that the resulting weight function
has a certain degree of smoothness and large constant
regions. Thus, the polynomial parts are either constant or
the lowest degree polynomial that satisfies either the first,
the first and second, or all of the following conditions:

tinuously differentiable, but not twice differentiable. In
Table XI the weight is composed of cubic polynomials
and is twice continuously differentiable, but not thrice
differentiable. The derivatives of all the polynomials
@ - 4 R,b,r,d (r) are positive for a < r < b, so the non-
constant polynomial parts of the weight are monotonic. In
fact, for a = 0, b = 1, c = 0, and d = 1 the polynomials are
P(r) = r, P(r) = r2(3 - 2r), P(r) = r3(10 - 15r + 6r’).

The algorithm is somewhat sensitive when piece-wise
polynomial weights are used, so in these cases a nonlinear
relaxation factor of 0.1 is used (not all cases need a factor
this small). Also, the initial grid is equi-spaced in r.

Again, the ratios and deviations are excellent. A better
solution technique or tuned relaxation factor would easily
speed up the algorithm. For the polynomial weights, the
grid-generation problem becomes more difficult as the
smoothness of the weight is increased. This is unexpected,
and we have no clear explanation for this behavior.
However, we do note that, as the degree of the transition
polynomial increases, for the interval [a, b], the values of
the polynomial remain bounded, the maximum values of
the derivatives increase slowly, the maximum values of the
second derivatives increase significantly, the maximum
value of the third derivatives increase rapidly, and so forth.
This is a possible source of the slow convergence.

P a,b,r,d(a) = c, P,,w(b) = d (4.42)

Ph,,da) = 0, Ph,d(b) = 0, (4.43)

P6,,,:Ja) = 0, P~,~Ab) = 0. (4.44)

The weight function is chosen (with some asymmetry) as

4.4. Reference Grids

To test the reference-grid concept, again, a trivial curve

W(r) = 1.0, 0.0 < r < 0.2,

W(r) = Po.2,0.3,~.~,4.~(rL 0.2 < r < 0.3,

W(r) = 4.0, 0.3 < r < 0.5, (4.45)

W(r) = P0_5,0_6.4.0,1.0(r)~ 0.5 < r < 0.6,

W(r) = 1.0, 0.6 < r < 1.0.

In Table IX the weight is composed of linear polynomials
and is continuous, but not differentiable. In Table X the
weight is composed of cubic polynomials and is con-

x = r, Y = 0, z = 0, O<r<l, (4.46)

is used, and the solution-adaptive weight is set to the iden-

TABLE X

Differentiable Weight

n Itr

17 103
33 126
65 141

Computed
ratio

1.975
1.985
1.994

Dev

0.082
0.045
0.024

Dev

0.092
0.05 1
0.026

GRID GENERATION

TABLE XI

Twice Differentiable Weight

n 1tr

17 269
33 224
65 301

Computed
ratio

1.972
1.983
1.994

Dev

0.098
0.052
0.028

tity, W(r) G 1. With this setup, the only effects come from
the reference-grid weight o(l). When a reference grid a(5) is
used to determine w(t), then

45) = Q(t). (4.47)

In this case, the Euler-Lagrange equation becomes

Note that this equation is linear, so the code computes the
solution in one nonlinear iteration. In addition, if both the
first and second derivatives of r and c1 are differenced in
the same way, then the solution produced by the code is
r = cc; i.e., the reference grid is replicated. Compression by
live orders of magnitude over nine grid points is trivial to
achieve, the compression being limited only by machine
word length.

5. SURFACES

Though development of grid generators for surfaces is
analogous to that for curves, two functionals play a central
role: one is for segment-length control, and the other is for
cell-area control. A third functional for orthogonality con-
trol is also implemented, but this is not as significant. One
important point is that the solution-adaptive weights for
each type of control must be chosen in a consistent fashion.
A nice aspect of a reference grid is that the reference weights
are always consistent. The discussion begins with a brief
review of the material in [9] for surface-grid generation. Let

v = v(r, s) = (x(r, ~1, y(r, s), z(r, ~11,

define a surface. The problem at hand is

O<r, s6 1,
(5.49)

to generate a new
“continuum grid” by reparameterizing the surface,

so that the resulting (continuum) grid has some desired
properties. In terms of the reparameterization

x(t, 9) =x(45, vl),s(L r)),
~(5, v) = y(r(l, r), 45, v)),
~(4~9) = 445, ~1, s(l, 9)).

171

(5.51)

Then, the surface is also given by

v = v(5, r) = (X(5, rl), Y(5, VI, 45, II)). (5.52)

Here, x, y, and z are physical variables; r and s are
parameter variables; and 5 and q are logical variables.

The tangent vectors to coordinate lines are needed for the
grid generation equations. The tangent vectors to parameter
coordinates are

a~ av --
dr’ as’

(5.53)

while the tangent vectors to logical coordinates are

(5.54)

Now, the reference grid is two-dimensional, so let

(44, VI, B(59 II)), 0<5, rid 1, (5.55)

define a planar reference space. Then, after the grid is
discretized, define the reference weight o, as the length
of a parameter grid line in 5 direction,

w,(51 r) = J#, r) + B:(5> VI. (5.56)

The weight o2 is defined similarly, using the q derivative.
There are two solution adaptive weights: W, for the 5
direction, and W, for the q direction.

5.1. Length Control

The length functional is defined in terms of the surface
metrics:

P=P(r, s)= g
il ~1

2

=(g)‘+(py+(t-$ (5.57)

-ax ax I ay ay I az az
ar as at-as &as’

2

(5.58)

172 STEINBERG AND ROACHE

If

F(r, s, a, b) = Pa2 + 2Qab + Rb’,

then the functional to be minimized is

The derivatives with respect to the parameter variables
are difficult to compute, while the derivatives with respect to

(5.60) the logical variables are easy to compute. Therefore, the
former is eliminated in favor of the latter by using the chain
rule

1 W,(r, 3) a 1
--

2 ~ F(r, s, rr, sg)
o,(r, r)

$‘j

+ W2(ry s) a i
(5.68)

___ F(r, s, rq, s,,) 4 4. (5.61) -=-
w2(5, VI as J

In [9], the norms of tangent vectors to the logical- H ere J is the Jacobian of the transformation between the
coordinate lines on the surface are given by (~$11) and the (r, s) variables,

(5.62)

so that, intuitively, the minimization problem produces
grids with

f3r as ig2-j 1 & as ’
(5.69)

&%j

IIT& a ys, IITJ a y$-$ (5.63)
5.2. Area Control

The area functional is defined in terms of the square of the
element of surface area

Introduce

r,s,a, b)=~a2+2~ab+~b2,
S(r, s) = J2

(5.64)

(; ;)+J2(; ;)+J2(; 5>. (5.70)

r,s,a,b)=~a2+2~ab+~b2. (5.65)

Then, the Euler-Lagrange equations for the minimization
of the functional are:

1 F(r,s,rc,sg)aW,+F(r,s,r,,s,)aW2 =-
2 (WI t% 02 ar >

~~(r,s,r~,sc)+~~(r,s,r,,s,) ,
1 2 >

(5.66)

In logical coordinates, the chain rule gives the element as

dmJ(; ;). (5.71)

If each side of a cell is changed by a factor, then the area
is changed by the product of the factors. Therefore, the
product of the solution adaptive weights is used in the area
algorithm. It is natural to use the areas of reference cells
A(<, q) as a weight for the area functional. In the case where
the reference grid is rectangular, A(<, q) = w,(& q) ~~(5, q).
The grid is required to satisfy

dmJ(; :)a A(5’9)
JW,(r, s) W2(r, 3)

(5.72)

(see [9] for more details), and, consequently, the functional

F(r,s,rc,sy)aW,+F(r,s,r,,s,)aW2
as 02 as

w, aF
---(r,~,r~,s~)+~;~s(r,s,r,,s~)

2

to be minimized is

1 S(r, s) W,(r, s) W2(r, s) J2 --
2 s A(& v)

4 4. (5.73)

(5.67) The Euler-Lagrange equations are

GRID GENERATION 173

5.3. Orthogonality Control

The orthogonality control attempts to keep the grid lines

=g(sw’w2);,
orthogonal by keeping the inner product of tangent vectors

(5.74) to the grid lines zero (see [9] for more details). The
orthogonality functional is also defined in terms of the sur-

-$(Js~“>r~+t(JSWAIw2)ri face metrics P = P(r, s), Q = Q(r, s), and R = R(r, s) that are
defined in the section on length control. The inner product

1 3 12 of the two vectors tangent to the logical coordinate lines is
=;; (SW, w+ (5.75)

F= Pr<r,, + Q(r(s, + rqrC) + Rscs,,,

The left-hand side of these equations can be put into
symmetric form: so the integral to be minimized is

+$(Js~w2s~)-&(Js~w2si> s F2 dt dq.

=;;(sw’ w24,
Let

(5.76)
Fr = P,rgr, + Q,(rtsv + rart) + R,s~s,,,

-$(Js~“2r~)+t(Js~w2rl) F, = P,r<r,, + Q,(rSs7 + r,,r& + Rss5s,,,

=g (SW, W2)G.
and

(5.77)
A = Pr, + Qs,, B=Qr,+Rs,,

These equations are in a symmetric “quasi-uncoupled” C=Pr,+Qs<, D=Qr<+Rs(.

(i.e., nonlinear coupling only) form

;1 ii Then the Euler-Lagrange equations are

(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

(5.87)

+~(+a,r:-B,r,)+Y(-BIrr+ylr,) all

=g (SW, W2)5 (5.78)
$(A2r~)+&(C2r,))+$(ABs~)+~(CDsv)

= FF,, (5.88)

+~(+a,sl-B2s,)+P(-82SC+Y2Sn)
all $(ABri)+t(CDr,)+$(B2s,)+-$(D2s,)

(5.79) = FF,. (5.89)

where 5.4. Numerical Algorithm for Surfaces

a1 =
SW, w,s;

A ’

SW1 w2s,s,
PI= A 2

The numerical algorithm generates a grid on the interior
and boundary of the surface simultaneously; that is, the

(5.80)
interior and boundary Euler-Lagrange equations are solved
using a simultaneous iteration. The interior grid depends

SW, w,s;
on the boundary grid but not conversely. The interior

?‘I =
algorithm uses a linear combination of length, area, and

A ’ orthogonality control [9], while the boundary algorithm

SW, W2r2
is obtained by reducing the interior length control to the

a2=
A ’

boundaries. Both the interior and boundary algorithms use
the reference grid and solution adaptive weights.

82=
SW, W2rtr, The boundary algorithm given by this approach differs

A t (5.8l) from that for curves given in Section 4 of this paper. To see

SW, W2rg
this, compare the formulas for the reference grid weights for

Y2 =
curves (4.47) and surfaces (5.56). In the surface case there is

A ’ a square root of a sum of squares that simplifies to a single

174 STEINBERG AND ROACHE

term in the curve case. In Section 4, this simplification was
used while here it is not applicable. This results in the dif-
ference formulas for the reference weights that differ by a
truncation error. As a consequence, the reference grid will
not be exactly replicated on the boundary, even in simple
problems. The replication of the reference grid in the
interior, especially for nontrivial examples, is even more
difficult (see [2]). However, in rectangular regions, replica-
tion is obtained up to a second-order truncation error, so
that, in the limit, reference grids are reproduced exactly.

Given an approximate solution for I and s, the right-hand
sides of the Euler-Lagrange equations are evaluated using
central differences. The left-hand sides are differenced using
the schemes discussed in Section 2. This produces a system
of nonlinear symmetric finite-difference equations for r and
s. The coefficients of the difference scheme are evaluated
using the current approximate solution. Then, the terms in
the first equation that involve s as an unknown are lagged
one iteration, while the terms in the second equation that
involve Y are lagged. The resulting linear equations for the
surface and boundary are solved using an SOR algorithm.
(SOR is used for simplicity; other algorithms could be used
to gain speed.)

6. NUMERICAL VALIDATION FOR SURFACES

First the convergence rate for the surface generator.is
tested by using it to convert a distorted parameterization of
the unit square to the identity parameterization x = r, y = s.
Note that the unit square is a trivial surface and that the
identity map is the obvious solution of the grid generation
equations. In this test and the next, the reference weight and
solution adaptive weight are set equal to one. In this case,
the grid generator will try to produce a uniform grid. This
is tested on two surfaces. The orthogonality functional is
tested separately. Finally the reference weight and solution
adaptivity are tested. The surface grid generator does
perform well and is capable of producing suitable grids
for a wide range of problems. Again, the performance of the
algorithms is judged using the quality measures for length,
area, and orthogonality. In general, the initial grid is
equi-distributed in r and s.

6.1. Convergence Rate

The numerical scheme is second order, as the following
test confirms. The problem used to test the convergence rate
is a re-parameterization of the unit square,

x=r+
sin(7rr) sin(7cs)

2?T 1

y=s+
sin(xr) sin(7cs)

2lK ’
(6.90)

z = 0,

TABLE XII

Convergence Rate for Surface Generator

Dev- Dev- Max- Mean- Midpoint Midpoint
n Itr length area angle norm norm x Y

5 10 0.011 0.019 88.73 0.0080 0.042 0.50546 0.50546
17 13 0.0031 0.0050 89.64 0.0022 0.022 0.50143 0.50143
33 15 0.00088 0.0013 89.90 0.00060 0.012 0.50041 0.50039
65 31 0.00065 0.00089 89.94 0.00043 0.018 0.50040 0.50031

where 0 < r, s < 1. If the parameter space (r, s), is divided
into equal squares, then the previous parameterization
produces an irregular grid in the physical space. The
algorithm changes this irregular grid to a uniform grid.

The convergence rate test is done with the length and
area functionals equally weighted, and the orthogonality
functional omitted. The results are reported in Table XII.
The nonlinear tolerance was set to lop5 while the linear
tolerance was set to 10P6 with a maximum number of linear
iterations being 100. The grid is n by n. The number of non-
linear iterations needed to meet the tolerance is itr while
dev-length is the normalized standard deviation of the
lengths of the cell edges, dev-area is the normalized standard
deviation of the cell areas, and angle gives a measure of
the angles between the grid lines (see Section 2.1 for more
details).

The grid is supposed to converge to a uniform grid.
The error is computed using both the maximum norm
max-norm and the mean square measure mean-norm. The
columns labelled x and The

mean-norm column should remain constant for a second-
order method. Also, note that the convergence of the center
point is second order.

6.2. Uniform Grids

The results of the tests for two surfaces are presented: the
first surface is a quardratic bump, while the second is a
wave. The nonlinear tolerance was set to 1O-4 while the
linear tolerance was set to lo-‘. The bump grid is 17 by 17
while the wave is 21 by 21. The bump is given by

x = r, y = s, z= 16s(r- l)r(s- l)s, (6.91)

where 0 < r, s < 1 and E gives the height of the bump.

GRID GENERATION 175

FIG. 1. (a) Bump of height 1; (b) Bump of height 100.

Figure la gives the grid for E = 1 while Fig. lb gives the
grid for E = 16. The algorithm generates grids for surfaces of
any height (that is, at least for E = 1000). This is in agree-
ment with the results for the quadratic curve where grids
were generated on curves of arbitrary height for a 21 by
21 grid (see Table II). Table XIII gives some data for
these tests. Both the graphics and quality measures show
that the grid is acceptable.

TABLE XIII TABLE XV

Data for Quadratic Curve Tests Bifurcation for a Wave

Height
E Itr

Dev-
length

Dev-
area

n Bifurcation

17 2.5 < E < 2.7
21 2.5 GE i 2.6
33 &>3.1

1 7 0.15 0.23
100 15 0.36 0.28

TABLE XIV

The Corner Angle at Y = s = 0 for the Wave Surface

Height 0
E (in degrees)

0 78
f 35
1 21
2 12

The second surface is a wave that was previously intro-
duced in [S] and also was studied in [111,

x = r,
r+s

Y = s, z = 2+ E sin(n(r + s)),
(6.92)

where 0 Q r, s < 1. This surface is difficult to grid, partly
because its corner angles become very acute as E increases
(see Table XIV). The grid generated for this surface by
previous algorithms [111 bifurcates for rather small values
of E (E z 1 for a 21 by 21 grid). The new algorithm does
much better.

The bifurcation point in E is located by observing the
number of nonlinear iterations needed for convergence.
Before the bifurcation point, the number increases with E;
while after the bifurcation, the number decreases. See
Table XV for the dependence of the bifurcation point on the
size of the grid. The results presented after Eq. (4.38) show
that the bifurcation point for the boundary curve is larger
than for the full algorithm, so the bifurcation point is deter-
mined by the interior algorithm. In a 33 by 33 grid, the algo-
rithm becomes unstable before the bifurcation point; the
algorithm can be stabilized using under-relaxation (a factor
of 1 was used). (Recall that a relaxation factor also had a
significant impact on the convergence of the curve algo-
rithm.) In this case, the bifurcation point satisfies E > 3.1.
This represents a significant improvement over all other
algorithms tested.

To clearly demonstrate the quality of a 21 by 21 grid that
is generated on the wave for E = 2, three views are presented
in Fig. 2. The views show that the grid is uniform. A grid is
also generated for E = $, but is not presented as it looks like

176 STEINBERG AND ROACHE

a b

FIG. 2. Three views of a wave.

TABLE XVI the one for E = 2, only a bit better. Data from these com-

Data for the Wave
putations is presented in Table XVI (a nonlinear relaxation
factor of i and a uniform initial grid was used).

Height Dev- Dev- Dev-
E 1tr length area angle 6.3. Orthogonality

I

;
21 0.022 0.10 52

The orthogonality control (with no length or area con-
64 0.059 0.16 20 trol) is used to generate a grid on a section of a sphere of

radius one: n/4 < C$ < 3144, 0 < 0 < rc, where I$ is the polar

GRID GENERATION 177

angle and 8 is the equatorial angle. Spherical coordinates
are used to parameterize the sphere; this parameterization
produces orthogonal coordinates, so the code does not
move the points.

Also, the orthogonality is tested by repeating the run in
the convergence rate test, where n = 17, with length, area,
and orthgonality equally weighted. Note that the limit grid
in this problem is orthogonal. The orthogonality control
changes the generated grid by less than 5 % (some change
on the order of truncation error is to be expected).

6.4. Reference Grid Tests

To test the reference grid portion of this algorithm, the
surface is set to the unit square (so the metrics are trivial)
and the solution adaptive weight is set to one. Tests run for
17 by 17 grids in a square planar region typically converge
to machine precision in two or, at most, three nonlinear
iterations. (The equations are no longer linear because of
the area and orthogonality controls.) For the data in
Table XVII, the grids were converged to full machine preci-
sion. The reference grid is rectangular with an exponential
compression along one side. The spacing goes from 2- ’ to
2- n+ ‘, where n is the number of intervals in the logical
direction where the grid is being compressed (in this case,
from 0.5 to 0.0003). As discussed before, the reference grid
is not exactly replicated. However, the ratios of the grid
length are very accurate. In Table XVII the column
headings, dev-length, dev-area, and dev-angle, are quality
measures, while the row headings tell which controls are
turned on (all means length, area, and orthogonality). The
grids produced by each of the tests are nearly identical.

Because the code converges so fast when a reference grid
is used, it is worthwhile to put as much information as
possible in the reference grid rather than in the solution-
adaptive weights.

6.5. Solution Adaptivity Tests

The solution adaptivity is first tested by using the
exponential weight given in Eq. (4.40) in one of the logical
directions, while the weight in the other direction is taken as
one. In the logical direction where the exponential weight is
used, the grid is essentially identical to the grid computed

TABLE XVII

Reference Grid Tests

17x 17

Length control
Area control
Length & area controls
All controls

Dev- Dev- Dev-
length area angle

0.0305 0.0610 90.00
0.0303 0.0610 90.00
0.0304 0.0609 89.99
0.0305 0.0610 89.99

TABLE XVIII

Exponential Solution-Adaptive Weights

Dev- Dev- Dev-
n length area angle Itr

17 0.02 1 0.054 89.98 6
33 0.011 0.026 89.89 6
65 0.010 0.0060 89.52 15

by the curve generator, while in the direction where the
weight is one, the grid is uniformly spaced. This is true for
length, area, length and area, and length and area and
orthogonality controls. As the results are essentially the
same as those in Table V, they are not presented.

The next test, presented in Table XVIII, uses an exponen-
tial weight in each logical direction,

(6.93)

where a = b = 4 and x0 = y, = f. Equally weighted length,
area, and orthogonality control is used. If the orthogonality
control is removed in the n = 65 case, then the algorithm
converges in 13 iterations.

7. COMMENTS

Planar regions are special cases of surfaces, so the surface
grid generator can be used to grid such regions. However,
some explicit parameterization of the region, where the
parameters range over a square, is needed. If the planar
region is assumed to be in the x - y plane, then

x = r, Y = s, z = 0. (7.94)

gives a one-to-one and onto map of (r, s) to (x, y).
However, the domain of the mapping is not necessarily
square.

In fact, the theory given in Section 5 does not depend on
the domain being a square, so it can be applied using the
mapping (7.94). In this case, the surface metrics and
Jacobian are trivial:

P= 1, Q=O, R= 1, J= 1. (7.95)

Now there is no longer a need for the explicit surface
parameterization, because the information given in (7.95) is
all that is needed in the formulas used in Section 5.

This information was used to convert a surface code to a
planar code.

Next, we note that the continuum grids do not depend

178 STEINBERG AND ROACHE

on the parameterization. The variational problems are all
derived from proportionalities (see (3.31), (5.63), and
(5.72)), which are defined in terms of quantities that do not
depend on the parameterization. The geometric quantities
are defined in terms of the logical variables, namely, lengths
of tangent and normal vectors and thus do not depend on
the parameterization. It is a simple exercise to confirm this
using the chain rule. The solution adaptive weights are
defined in terms of the physical variables (the parameteriza-
tion only appears implicitly) and the reference grid only
involves the logical variables. Thus, for a given functional,
its value only depends on the geometric object, the solution
adaptive weight, and the reference grid. If the parameteriza-
tion of the object is changed, the values of the functionals do
not change.

If the minimization problem that involves linear com-
binations of the functionals always possessed a unique solu-
tion, then the continuum grids would always be unique. The
existence and uniqueness for curves is shown in Steinberg
and Roache [111. Similar results are available for the length
functional in higher dimensions for some geometries (see
Dvinsky [4]). Partial results for the area functional are
given in [2, 33.

On the other hand, the discrete grid-generation algorithm
does explicitly depend on the parameterization because
the parameterization is used to compute many quantities;
that is, when the parameterization is changed the values
of the functional changes even if the discrete points on
the geometric object do not change. When the discrete
grid-generation equations have multiple solutions, then
the generated discrete grid can change if anything in the
algorithm is changed, for example, the initial data or
the parameterization. Numerical evidence indicates that the
discrete equations possess a unique solution for sufficiently
high resolution. However, there are no mathematical results
to justify this.

The convergence rate tests clearly demonstrate that the
solutions of the discrete equations do depend on the

parameterization. In these tests, when intervals or squares
are parameterized in different ways, the generated grids are
different. However, numerically, the solutions of the grid-
generation equations have second-order convergence. Note
that the difference schemes are clearly second order. Thus
the numerical evidence indicates that generated discrete
grids which well resolve the geometry, essentially. do not
depend on the parameterization.

Unfortunately, the mathematical possibility exists that
there is a continuum problem which has a unique solution
and for which every discrete approximation, no matter how
high the resolution, has multiple solutions.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Il.

12.

13.

14.

REFERENCES

R. Arina, in Numerical Grid Generation in Computational Fluid
Mechanics ‘88, Miami, Florida, 1988, edited by S. Sengupta et al.
(Pineridge Press, Swansea, 1988), p. 351.

J. E. Castillo, Thesis, Department of Mathematics, University of
New Mexico, 1987 (unpublished).

J. E. Castillo, S. Steinberg, and P. J. Roache, J. Comput. Appl. Math. 20,
127 (1987).

A. S. Dvinsky, in Numerical Grid Generation in Computationaf Fluid
Mechanics ‘88, Miami, Florida, 1988, edited by S. Sengupta et al.
(Pineridge Press, Swansea, 1988), p. 351.

P. Eiseman, Appl. Math. Comput. 21, 233 (1987).

P. Knupp, Thesis, Department of Mathematics, University of
New Mexico, 1989 (unpublished).

VAX UNIX MACSYMA Reference Manual, Version 11 (Symbolics,
Inc., 1985).

J. Saltzman, .I. Comput. Phys. 63, 1 (1986).

S. Steinberg and P. J. Roache, Numer. Methods PDEs 2, 71 (1986).

J. E. Castillo, S. Steinberg, and P. J. Roache, Appl. Math. Comput. 28,
155 (1988).

S. Steinberg and P. J. Roache, J. Comput. Phys. 91, 255 (1990).

S. Steinberg and P. J. Roache, Technical Report, Department of
Mathematics, University of New Mexico, 1990.

J. F. Thompson, 2. U. A. Warsi, and C. W. Mastin, Numerical Grid
Generation (North Holland, New York, 1985).

Z. U. A. Warsi, J. Comput. Phys. 64,82 (1986).

